# pip install openrlbenchmark==0.2.1a5 | |
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation | |
echo "we deal with $TAGS_STRING" | |
python -m openrlbenchmark.rlops_multi_metrics \ | |
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \ | |
"ppo$TAGS_STRING" \ | |
"ppo_gpt2xl_grad_accu$TAGS_STRING" \ | |
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \ | |
--no-check-empty-runs \ | |
--pc.ncols 2 \ | |
--pc.ncols-legend 1 \ | |
--output-filename benchmark/trl/$FOLDER_STRING/different_models \ | |
--scan-history | |
python -m openrlbenchmark.rlops_multi_metrics \ | |
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \ | |
"ppo_Cerebras-GPT-6.7B_grad_accu_deepspeed_stage2$TAGS_STRING" \ | |
--env-ids sentiment-analysis:cerebras/Cerebras-GPT-6.7B \ | |
--no-check-empty-runs \ | |
--pc.ncols 2 \ | |
--pc.ncols-legend 1 \ | |
--output-filename benchmark/trl/$FOLDER_STRING/deepspeed \ | |
--scan-history | |
python benchmark/upload_benchmark.py \ | |
--folder_path="benchmark/trl/$FOLDER_STRING" \ | |
--path_in_repo="images/benchmark/$FOLDER_STRING" \ | |
--repo_id="trl-internal-testing/example-images" \ | |
--repo_type="dataset" | |