|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import contextlib |
|
import os |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers import DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel |
|
from diffusers.loaders import AttnProcsLayers |
|
from diffusers.models.attention_processor import LoRAAttnProcessor |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg |
|
|
|
from ..core import randn_tensor |
|
|
|
|
|
@dataclass |
|
class DDPOPipelineOutput(object): |
|
""" |
|
Output class for the diffusers pipeline to be finetuned with the DDPO trainer |
|
|
|
Args: |
|
images (`torch.Tensor`): |
|
The generated images. |
|
latents (`List[torch.Tensor]`): |
|
The latents used to generate the images. |
|
log_probs (`List[torch.Tensor]`): |
|
The log probabilities of the latents. |
|
|
|
""" |
|
|
|
images: torch.Tensor |
|
latents: torch.Tensor |
|
log_probs: torch.Tensor |
|
|
|
|
|
@dataclass |
|
class DDPOSchedulerOutput(object): |
|
""" |
|
Output class for the diffusers scheduler to be finetuned with the DDPO trainer |
|
|
|
Args: |
|
latents (`torch.Tensor`): |
|
Predicted sample at the previous timestep. Shape: `(batch_size, num_channels, height, width)` |
|
log_probs (`torch.Tensor`): |
|
Log probability of the above mentioned sample. Shape: `(batch_size)` |
|
""" |
|
|
|
latents: torch.Tensor |
|
log_probs: torch.Tensor |
|
|
|
|
|
class DDPOStableDiffusionPipeline(object): |
|
""" |
|
Main class for the diffusers pipeline to be finetuned with the DDPO trainer |
|
""" |
|
|
|
def __call__(self, *args, **kwargs) -> DDPOPipelineOutput: |
|
raise NotImplementedError |
|
|
|
def scheduler_step(self, *args, **kwargs) -> DDPOSchedulerOutput: |
|
raise NotImplementedError |
|
|
|
@property |
|
def unet(self): |
|
""" |
|
Returns the 2d U-Net model used for diffusion. |
|
""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def vae(self): |
|
""" |
|
Returns the Variational Autoencoder model used from mapping images to and from the latent space |
|
""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def tokenizer(self): |
|
""" |
|
Returns the tokenizer used for tokenizing text inputs |
|
""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def scheduler(self): |
|
""" |
|
Returns the scheduler associated with the pipeline used for the diffusion process |
|
""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def text_encoder(self): |
|
""" |
|
Returns the text encoder used for encoding text inputs |
|
""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def autocast(self): |
|
""" |
|
Returns the autocast context manager |
|
""" |
|
raise NotImplementedError |
|
|
|
def set_progress_bar_config(self, *args, **kwargs): |
|
""" |
|
Sets the progress bar config for the pipeline |
|
""" |
|
raise NotImplementedError |
|
|
|
def save_pretrained(self, *args, **kwargs): |
|
""" |
|
Saves all of the model weights |
|
""" |
|
raise NotImplementedError |
|
|
|
def get_trainable_layers(self, *args, **kwargs): |
|
""" |
|
Returns the trainable parameters of the pipeline |
|
""" |
|
raise NotImplementedError |
|
|
|
def save_checkpoint(self, *args, **kwargs): |
|
""" |
|
Light wrapper around accelerate's register_save_state_pre_hook which is run before saving state |
|
""" |
|
raise NotImplementedError |
|
|
|
def load_checkpoint(self, *args, **kwargs): |
|
""" |
|
Light wrapper around accelerate's register_lad_state_pre_hook which is run before loading state |
|
""" |
|
raise NotImplementedError |
|
|
|
|
|
def _left_broadcast(input_tensor, shape): |
|
""" |
|
As opposed to the default direction of broadcasting (right to left), this function broadcasts |
|
from left to right |
|
Args: |
|
input_tensor (`torch.FloatTensor`): is the tensor to broadcast |
|
shape (`Tuple[int]`): is the shape to broadcast to |
|
""" |
|
input_ndim = input_tensor.ndim |
|
if input_ndim > len(shape): |
|
raise ValueError( |
|
"The number of dimensions of the tensor to broadcast cannot be greater than the length of the shape to broadcast to" |
|
) |
|
return input_tensor.reshape(input_tensor.shape + (1,) * (len(shape) - input_ndim)).broadcast_to(shape) |
|
|
|
|
|
def _get_variance(self, timestep, prev_timestep): |
|
alpha_prod_t = torch.gather(self.alphas_cumprod, 0, timestep.cpu()).to(timestep.device) |
|
alpha_prod_t_prev = torch.where( |
|
prev_timestep.cpu() >= 0, |
|
self.alphas_cumprod.gather(0, prev_timestep.cpu()), |
|
self.final_alpha_cumprod, |
|
).to(timestep.device) |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) |
|
|
|
return variance |
|
|
|
|
|
def scheduler_step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
generator=None, |
|
prev_sample: Optional[torch.FloatTensor] = None, |
|
) -> DDPOSchedulerOutput: |
|
""" |
|
|
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
eta (`float`): weight of noise for added noise in diffusion step. |
|
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped |
|
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when |
|
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would |
|
coincide with the one provided as input and `use_clipped_model_output` will have not effect. |
|
generator: random number generator. |
|
variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we |
|
can directly provide the noise for the variance itself. This is useful for methods such as |
|
CycleDiffusion. (https://arxiv.org/abs/2210.05559) |
|
|
|
Returns: |
|
`DDPOSchedulerOutput`: the predicted sample at the previous timestep and the log probability of the sample |
|
""" |
|
|
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
prev_timestep = torch.clamp(prev_timestep, 0, self.config.num_train_timesteps - 1) |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod.gather(0, timestep.cpu()) |
|
alpha_prod_t_prev = torch.where( |
|
prev_timestep.cpu() >= 0, |
|
self.alphas_cumprod.gather(0, prev_timestep.cpu()), |
|
self.final_alpha_cumprod, |
|
) |
|
alpha_prod_t = _left_broadcast(alpha_prod_t, sample.shape).to(sample.device) |
|
alpha_prod_t_prev = _left_broadcast(alpha_prod_t_prev, sample.shape).to(sample.device) |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
pred_epsilon = model_output |
|
elif self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) |
|
elif self.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output |
|
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction`" |
|
) |
|
|
|
|
|
if self.config.thresholding: |
|
pred_original_sample = self._threshold_sample(pred_original_sample) |
|
elif self.config.clip_sample: |
|
pred_original_sample = pred_original_sample.clamp( |
|
-self.config.clip_sample_range, self.config.clip_sample_range |
|
) |
|
|
|
|
|
|
|
variance = _get_variance(self, timestep, prev_timestep) |
|
std_dev_t = eta * variance ** (0.5) |
|
std_dev_t = _left_broadcast(std_dev_t, sample.shape).to(sample.device) |
|
|
|
if use_clipped_model_output: |
|
|
|
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) |
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon |
|
|
|
|
|
prev_sample_mean = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
|
|
if prev_sample is not None and generator is not None: |
|
raise ValueError( |
|
"Cannot pass both generator and prev_sample. Please make sure that either `generator` or" |
|
" `prev_sample` stays `None`." |
|
) |
|
|
|
if prev_sample is None: |
|
variance_noise = randn_tensor( |
|
model_output.shape, |
|
generator=generator, |
|
device=model_output.device, |
|
dtype=model_output.dtype, |
|
) |
|
prev_sample = prev_sample_mean + std_dev_t * variance_noise |
|
|
|
|
|
log_prob = ( |
|
-((prev_sample.detach() - prev_sample_mean) ** 2) / (2 * (std_dev_t**2)) |
|
- torch.log(std_dev_t) |
|
- torch.log(torch.sqrt(2 * torch.as_tensor(np.pi))) |
|
) |
|
|
|
log_prob = log_prob.mean(dim=tuple(range(1, log_prob.ndim))) |
|
|
|
return DDPOSchedulerOutput(prev_sample.type(sample.dtype), log_prob) |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def pipeline_step( |
|
self, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.7): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
|
|
Examples: |
|
|
|
Returns: |
|
`DDPOPipelineOutput`: The generated image, the predicted latents used to generate the image and the associated log probabilities |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
all_latents = [latents] |
|
all_log_probs = [] |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
scheduler_output = scheduler_step(self.scheduler, noise_pred, t, latents, eta) |
|
latents = scheduler_output.latents |
|
log_prob = scheduler_output.log_probs |
|
|
|
all_latents.append(latents) |
|
all_log_probs.append(log_prob) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
return DDPOPipelineOutput(image, all_latents, all_log_probs) |
|
|
|
|
|
class DefaultDDPOStableDiffusionPipeline(DDPOStableDiffusionPipeline): |
|
def __init__(self, pretrained_model_name: str, *, pretrained_model_revision: str = "main", use_lora: bool = True): |
|
self.sd_pipeline = StableDiffusionPipeline.from_pretrained( |
|
pretrained_model_name, revision=pretrained_model_revision |
|
) |
|
|
|
self.use_lora = use_lora |
|
self.pretrained_model = pretrained_model_name |
|
self.pretrained_revision = pretrained_model_revision |
|
|
|
try: |
|
self.sd_pipeline.unet.load_attn_procs(pretrained_model_name, revision=pretrained_model_revision) |
|
self.use_lora = True |
|
except OSError: |
|
if use_lora: |
|
warnings.warn( |
|
"If you are aware that the pretrained model has no lora weights to it, ignore this message. " |
|
"Otherwise please check the if `pytorch_lora_weights.safetensors` exists in the model folder." |
|
) |
|
|
|
self.sd_pipeline.scheduler = DDIMScheduler.from_config(self.sd_pipeline.scheduler.config) |
|
self.sd_pipeline.safety_checker = None |
|
|
|
|
|
self.sd_pipeline.vae.requires_grad_(False) |
|
self.sd_pipeline.text_encoder.requires_grad_(False) |
|
self.sd_pipeline.unet.requires_grad_(not self.use_lora) |
|
|
|
def __call__(self, *args, **kwargs) -> DDPOPipelineOutput: |
|
return pipeline_step(self.sd_pipeline, *args, **kwargs) |
|
|
|
def scheduler_step(self, *args, **kwargs) -> DDPOSchedulerOutput: |
|
return scheduler_step(self.sd_pipeline.scheduler, *args, **kwargs) |
|
|
|
@property |
|
def unet(self): |
|
return self.sd_pipeline.unet |
|
|
|
@property |
|
def vae(self): |
|
return self.sd_pipeline.vae |
|
|
|
@property |
|
def tokenizer(self): |
|
return self.sd_pipeline.tokenizer |
|
|
|
@property |
|
def scheduler(self): |
|
return self.sd_pipeline.scheduler |
|
|
|
@property |
|
def text_encoder(self): |
|
return self.sd_pipeline.text_encoder |
|
|
|
@property |
|
def autocast(self): |
|
return contextlib.nullcontext if self.use_lora else None |
|
|
|
def save_pretrained(self, output_dir): |
|
if self.use_lora: |
|
self.sd_pipeline.unet.save_attn_procs(output_dir) |
|
self.sd_pipeline.save_pretrained(output_dir) |
|
|
|
def set_progress_bar_config(self, *args, **kwargs): |
|
self.sd_pipeline.set_progress_bar_config(*args, **kwargs) |
|
|
|
def get_trainable_layers(self): |
|
if self.use_lora: |
|
|
|
lora_attn_procs = {} |
|
for name in self.sd_pipeline.unet.attn_processors.keys(): |
|
cross_attention_dim = ( |
|
None if name.endswith("attn1.processor") else self.sd_pipeline.unet.config.cross_attention_dim |
|
) |
|
if name.startswith("mid_block"): |
|
hidden_size = self.sd_pipeline.unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(self.sd_pipeline.unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = self.sd_pipeline.unet.config.block_out_channels[block_id] |
|
|
|
lora_attn_procs[name] = LoRAAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim |
|
) |
|
self.sd_pipeline.unet.set_attn_processor(lora_attn_procs) |
|
return AttnProcsLayers(self.sd_pipeline.unet.attn_processors) |
|
else: |
|
return self.sd_pipeline.unet |
|
|
|
def save_checkpoint(self, models, weights, output_dir): |
|
if len(models) != 1: |
|
raise ValueError("Given how the trainable params were set, this should be of length 1") |
|
if self.use_lora and isinstance(models[0], AttnProcsLayers): |
|
self.sd_pipeline.unet.save_attn_procs(output_dir) |
|
elif not self.use_lora and isinstance(models[0], UNet2DConditionModel): |
|
models[0].save_pretrained(os.path.join(output_dir, "unet")) |
|
else: |
|
raise ValueError(f"Unknown model type {type(models[0])}") |
|
|
|
def load_checkpoint(self, models, input_dir): |
|
if len(models) != 1: |
|
raise ValueError("Given how the trainable params were set, this should be of length 1") |
|
if self.use_lora and isinstance(models[0], AttnProcsLayers): |
|
tmp_unet = UNet2DConditionModel.from_pretrained( |
|
self.pretrained_model, |
|
revision=self.pretrained_revision, |
|
subfolder="unet", |
|
) |
|
tmp_unet.load_attn_procs(input_dir) |
|
models[0].load_state_dict(AttnProcsLayers(tmp_unet.attn_processors).state_dict()) |
|
del tmp_unet |
|
elif not self.use_lora and isinstance(models[0], UNet2DConditionModel): |
|
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") |
|
models[0].register_to_config(**load_model.config) |
|
models[0].load_state_dict(load_model.state_dict()) |
|
del load_model |
|
else: |
|
raise ValueError(f"Unknown model type {type(models[0])}") |
|
|