|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM |
|
|
|
from .modeling_base import PreTrainedModelWrapper |
|
|
|
|
|
class ValueHead(nn.Module): |
|
r""" |
|
The ValueHead class implements a head for GPT2 that returns a scalar for each output token. |
|
""" |
|
|
|
def __init__(self, config, **kwargs): |
|
super().__init__() |
|
if not hasattr(config, "summary_dropout_prob"): |
|
summary_dropout_prob = kwargs.pop("summary_dropout_prob", 0.1) |
|
else: |
|
summary_dropout_prob = config.summary_dropout_prob |
|
|
|
self.dropout = nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity() |
|
|
|
|
|
if hasattr(config, "hidden_size"): |
|
hidden_size = config.hidden_size |
|
if hasattr(config, "word_embed_proj_dim"): |
|
hidden_size = config.word_embed_proj_dim |
|
elif hasattr(config, "is_encoder_decoder"): |
|
if config.is_encoder_decoder and hasattr(config, "decoder"): |
|
if hasattr(config.decoder, "hidden_size"): |
|
hidden_size = config.decoder.hidden_size |
|
|
|
self.summary = nn.Linear(hidden_size, 1) |
|
|
|
self.flatten = nn.Flatten() |
|
|
|
def forward(self, hidden_states): |
|
output = self.dropout(hidden_states) |
|
|
|
|
|
|
|
if output.dtype != self.summary.weight.dtype: |
|
output = output.to(self.summary.weight.dtype) |
|
|
|
output = self.summary(output) |
|
return output |
|
|
|
|
|
class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper): |
|
r""" |
|
An autoregressive model with a value head in addition to the language model head. |
|
This class inherits from `~trl.PreTrainedModelWrapper` and wraps a |
|
`transformers.PreTrainedModel` class. The wrapper class supports classic functions |
|
such as `from_pretrained`, `push_to_hub` and `generate`. To call a method of the wrapped |
|
model, simply manipulate the `pretrained_model` attribute of this class. |
|
|
|
Class attributes: |
|
- **transformers_parent_class** (`transformers.PreTrainedModel`) -- The parent class of the wrapped model. This |
|
should be set to `transformers.AutoModelForCausalLM` for this class. |
|
- **lm_head_namings** (`tuple`) -- A tuple of strings that are used to identify the language model head of the |
|
wrapped model. This is set to `("lm_head", "embed_out")` for this class but can be changed for other models |
|
in the future |
|
- **supported_args** (`tuple`) -- A tuple of strings that are used to identify the arguments that are supported |
|
by the `ValueHead` class. Currently, the supported args are: |
|
- **summary_dropout_prob** (`float`, `optional`, defaults to `None`) -- The dropout probability for the |
|
`ValueHead` class. |
|
- **v_head_initializer_range** (`float`, `optional`, defaults to `0.2`) -- The initializer range for the |
|
`ValueHead` if a specific initialization strategy is selected. |
|
- **v_head_init_strategy** (`str`, `optional`, defaults to `None`) -- The initialization strategy for the |
|
`ValueHead`. Currently, the supported strategies are: |
|
- **`None`** -- Initializes the weights of the `ValueHead` with a random distribution. This is the default |
|
strategy. |
|
- **"normal"** -- Initializes the weights of the `ValueHead` with a normal distribution. |
|
|
|
""" |
|
transformers_parent_class = AutoModelForCausalLM |
|
lm_head_namings = ["lm_head", "embed_out"] |
|
supported_args = ( |
|
"summary_dropout_prob", |
|
"v_head_initializer_range", |
|
"v_head_init_strategy", |
|
) |
|
|
|
def __init__(self, pretrained_model, **kwargs): |
|
r""" |
|
Initializes the model. |
|
|
|
Args: |
|
pretrained_model (`transformers.PreTrainedModel`): |
|
The model to wrap. It should be a causal language model such as GPT2. |
|
or any model mapped inside the `AutoModelForCausalLM` class. |
|
kwargs (`dict`, `optional`): |
|
Additional keyword arguments, that are passed to the `ValueHead` class. |
|
""" |
|
super().__init__(pretrained_model, **kwargs) |
|
v_head_kwargs, _, _ = self._split_kwargs(kwargs) |
|
|
|
if not any(hasattr(self.pretrained_model, attribute) for attribute in self.lm_head_namings): |
|
raise ValueError("The model does not have a language model head, please use a model that has one.") |
|
|
|
self.v_head = ValueHead(self.pretrained_model.config, **v_head_kwargs) |
|
|
|
self._init_weights(**v_head_kwargs) |
|
|
|
def _init_weights(self, **kwargs): |
|
r""" |
|
Initializes the weights of the value head. The default initialization strategy is random. |
|
Users can pass a different initialization strategy by passing the `v_head_init_strategy` argument |
|
when calling `.from_pretrained`. Supported strategies are: |
|
- `normal`: initializes the weights with a normal distribution. |
|
|
|
Args: |
|
**kwargs (`dict`, `optional`): |
|
Additional keyword arguments, that are passed to the `ValueHead` class. These arguments |
|
can contain the `v_head_init_strategy` argument as well as the `v_head_initializer_range` |
|
argument. |
|
""" |
|
initializer_range = kwargs.pop("v_head_initializer_range", 0.2) |
|
|
|
init_strategy = kwargs.pop("v_head_init_strategy", None) |
|
if init_strategy is None: |
|
|
|
pass |
|
elif init_strategy == "normal": |
|
self.v_head.summary.weight.data.normal_(mean=0.0, std=initializer_range) |
|
self.v_head.summary.bias.data.zero_() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
**kwargs, |
|
): |
|
r""" |
|
Applies a forward pass to the wrapped model and returns the logits of the value head. |
|
|
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, `optional`): |
|
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model |
|
(see `past_key_values` input) to speed up sequential decoding. |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
kwargs (`dict`, `optional`): |
|
Additional keyword arguments, that are passed to the wrapped model. |
|
""" |
|
kwargs["output_hidden_states"] = True |
|
kwargs["past_key_values"] = past_key_values |
|
|
|
if self.is_peft_model and self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING": |
|
kwargs.pop("past_key_values") |
|
|
|
base_model_output = self.pretrained_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**kwargs, |
|
) |
|
|
|
last_hidden_state = base_model_output.hidden_states[-1] |
|
lm_logits = base_model_output.logits |
|
loss = base_model_output.loss |
|
|
|
if last_hidden_state.device != self.v_head.summary.weight.device: |
|
last_hidden_state = last_hidden_state.to(self.v_head.summary.weight.device) |
|
|
|
value = self.v_head(last_hidden_state).squeeze(-1) |
|
|
|
|
|
if lm_logits.dtype != torch.float32: |
|
lm_logits = lm_logits.float() |
|
|
|
return (lm_logits, loss, value) |
|
|
|
def generate(self, *args, **kwargs): |
|
r""" |
|
A simple wrapper around the `generate` method of the wrapped model. |
|
Please refer to the [`generate`](https://huggingface.co/docs/transformers/internal/generation_utils) |
|
method of the wrapped model for more information about the supported arguments. |
|
|
|
Args: |
|
*args (`list`, *optional*): |
|
Positional arguments passed to the `generate` method of the wrapped model. |
|
**kwargs (`dict`, *optional*): |
|
Keyword arguments passed to the `generate` method of the wrapped model. |
|
""" |
|
return self.pretrained_model.generate(*args, **kwargs) |
|
|
|
def state_dict(self, *args, **kwargs): |
|
r""" |
|
Returns the state dictionary of the model. We add the state dictionary of the value head |
|
to the state dictionary of the wrapped model by prepending the key with `v_head.`. |
|
""" |
|
if not self.is_peft_model: |
|
pretrained_model_state_dict = self.pretrained_model.state_dict(*args, **kwargs) |
|
else: |
|
|
|
pretrained_model_state_dict = {} |
|
|
|
v_head_state_dict = self.v_head.state_dict(*args, **kwargs) |
|
for k, v in v_head_state_dict.items(): |
|
pretrained_model_state_dict[f"v_head.{k}"] = v |
|
return pretrained_model_state_dict |
|
|
|
def push_to_hub(self, *args, **kwargs): |
|
setattr(self.pretrained_model, "v_head", self.v_head) |
|
|
|
return self.pretrained_model.push_to_hub(*args, **kwargs) |
|
|
|
def post_init(self, state_dict): |
|
r""" |
|
We add the state dictionary of the value head to the state dictionary of the wrapped model |
|
by prepending the key with `v_head.`. This function removes the `v_head.` prefix from the |
|
keys of the value head state dictionary. |
|
""" |
|
for k in list(state_dict.keys()): |
|
if "v_head." in k: |
|
state_dict[k.replace("v_head.", "")] = state_dict.pop(k) |
|
self.v_head.load_state_dict(state_dict, strict=False) |
|
del state_dict |
|
|
|
if hasattr(self.pretrained_model, "hf_device_map"): |
|
if ( |
|
"cpu" in self.pretrained_model.hf_device_map.values() |
|
or "disk" in self.pretrained_model.hf_device_map.values() |
|
): |
|
raise ValueError( |
|
"The model is offloaded on CPU or disk - CPU & disk offloading is not supported for ValueHead models." |
|
) |
|
|
|
first_device = list(set(self.pretrained_model.hf_device_map.values()))[0] |
|
|
|
self.v_head = self.v_head.to(first_device) |
|
|
|
def set_device_hook(module, input, outputs): |
|
new_output = () |
|
for output in outputs: |
|
if isinstance(output, torch.Tensor): |
|
new_output += (output.to(first_device),) |
|
else: |
|
new_output += (output,) |
|
return new_output |
|
|
|
self.register_forward_hook(set_device_hook) |
|
|
|
self.is_sequential_parallel = True |
|
|
|
|
|
class AutoModelForSeq2SeqLMWithValueHead(PreTrainedModelWrapper): |
|
r""" |
|
A seq2seq model with a value head in addition to the language model head. |
|
This class inherits from `~trl.PreTrainedModelWrapper` and wraps a |
|
`transformers.PreTrainedModel` class. The wrapper class supports classic functions |
|
such as `from_pretrained` and `push_to_hub` and also provides some additional |
|
functionalities such as `generate`. |
|
|
|
Args: |
|
pretrained_model (`transformers.PreTrainedModel`): |
|
The model to wrap. It should be a causal language model such as GPT2. |
|
or any model mapped inside the `AutoModelForSeq2SeqLM` class. |
|
kwargs: |
|
Additional keyword arguments passed along to the `ValueHead` class. |
|
""" |
|
transformers_parent_class = AutoModelForSeq2SeqLM |
|
lm_head_namings = ["lm_head", "embed_out", "output_projection"] |
|
supported_args = ( |
|
"summary_dropout_prob", |
|
"v_head_initializer_range", |
|
"v_head_init_strategy", |
|
) |
|
|
|
def __init__(self, pretrained_model, **kwargs): |
|
super().__init__(pretrained_model, **kwargs) |
|
v_head_kwargs, _, _ = self._split_kwargs(kwargs) |
|
self.is_encoder_decoder = True |
|
|
|
if not self._has_lm_head(): |
|
raise ValueError("The model does not have a language model head, please use a model that has one.") |
|
|
|
self.v_head = ValueHead(self.pretrained_model.config, **v_head_kwargs) |
|
|
|
self._init_weights(**v_head_kwargs) |
|
|
|
def _has_lm_head(self): |
|
|
|
for name, module in self.pretrained_model.named_modules(): |
|
if any(attribute in name for attribute in self.lm_head_namings): |
|
return True |
|
return False |
|
|
|
def post_init(self, state_dict): |
|
r""" |
|
We add the state dictionary of the value head to the state dictionary of the wrapped model |
|
by prepending the key with `v_head.`. This function removes the `v_head.` prefix from the |
|
keys of the value head state dictionary. |
|
""" |
|
for k in list(state_dict.keys()): |
|
if "v_head." in k: |
|
state_dict[k.replace("v_head.", "")] = state_dict.pop(k) |
|
self.v_head.load_state_dict(state_dict, strict=False) |
|
del state_dict |
|
|
|
if hasattr(self.pretrained_model, "hf_device_map"): |
|
if ( |
|
"cpu" in self.pretrained_model.hf_device_map.values() |
|
or "disk" in self.pretrained_model.hf_device_map.values() |
|
): |
|
raise ValueError( |
|
"The model is offloaded on CPU or disk - CPU & disk offloading is not supported for ValueHead models." |
|
) |
|
|
|
|
|
for name, module in self.pretrained_model.named_modules(): |
|
if any(attribute in name for attribute in self.lm_head_namings): |
|
lm_head_device = module.weight.device |
|
break |
|
|
|
|
|
self.v_head = self.v_head.to(lm_head_device) |
|
|
|
def set_device_hook(module, input, outputs): |
|
r""" |
|
A hook that sets the device of the output of the model to the device of the first |
|
parameter of the model. |
|
|
|
Args: |
|
module (`nn.Module`): |
|
The module to which the hook is attached. |
|
input (`tuple`): |
|
The input to the module. |
|
outputs (`tuple`): |
|
The output of the module. |
|
""" |
|
new_output = () |
|
for output in outputs: |
|
if isinstance(output, torch.Tensor): |
|
new_output += (output.to(lm_head_device),) |
|
else: |
|
new_output += (output,) |
|
return new_output |
|
|
|
self.register_forward_hook(set_device_hook) |
|
self.is_sequential_parallel = True |
|
|
|
def state_dict(self, *args, **kwargs): |
|
r""" |
|
Returns the state dictionary of the model. We add the state dictionary of the value head |
|
to the state dictionary of the wrapped model by prepending the key with `v_head.`. |
|
""" |
|
if not self.is_peft_model: |
|
pretrained_model_state_dict = self.pretrained_model.state_dict(*args, **kwargs) |
|
else: |
|
|
|
pretrained_model_state_dict = {} |
|
|
|
v_head_state_dict = self.v_head.state_dict(*args, **kwargs) |
|
for k, v in v_head_state_dict.items(): |
|
pretrained_model_state_dict[f"v_head.{k}"] = v |
|
return pretrained_model_state_dict |
|
|
|
def push_to_hub(self, *args, **kwargs): |
|
setattr(self.pretrained_model, "v_head", self.v_head) |
|
|
|
return self.pretrained_model.push_to_hub(*args, **kwargs) |
|
|
|
def _init_weights(self, **kwargs): |
|
r""" |
|
We initialize the weights of the value head. |
|
""" |
|
initializer_range = kwargs.pop("v_head_initializer_range", 0.2) |
|
|
|
init_strategy = kwargs.pop("v_head_init_strategy", None) |
|
if init_strategy is None: |
|
|
|
pass |
|
elif init_strategy == "normal": |
|
self.v_head.summary.weight.data.normal_(mean=0.0, std=initializer_range) |
|
self.v_head.summary.bias.data.zero_() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
**kwargs, |
|
): |
|
kwargs["past_key_values"] = past_key_values |
|
if self.is_peft_model and self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING": |
|
kwargs.pop("past_key_values") |
|
|
|
base_model_output = self.pretrained_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
output_hidden_states=True, |
|
**kwargs, |
|
) |
|
|
|
last_hidden_state = base_model_output.decoder_hidden_states[-1] |
|
lm_logits = base_model_output.logits |
|
loss = base_model_output.loss |
|
|
|
value = self.v_head(last_hidden_state).squeeze(-1) |
|
|
|
|
|
if lm_logits.dtype != torch.float32: |
|
lm_logits = lm_logits.float() |
|
|
|
return (lm_logits, loss, value) |
|
|
|
def generate(self, *args, **kwargs): |
|
r""" |
|
We call `generate` on the wrapped model. |
|
""" |
|
return self.pretrained_model.generate(*args, **kwargs) |
|
|