|
from datasets import load_dataset |
|
from torchvision import transforms |
|
from torch.utils.data import DataLoader |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
|
|
class LeNet(nn.Module): |
|
def __init__(self): |
|
super(LeNet, self).__init__() |
|
self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0) |
|
self.relu1 = nn.ReLU() |
|
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0) |
|
self.relu2 = nn.ReLU() |
|
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
self.fc1 = nn.Linear(256, 120) |
|
self.relu3 = nn.ReLU() |
|
self.fc2 = nn.Linear(120, 84) |
|
self.relu4 = nn.ReLU() |
|
self.fc3 = nn.Linear(84, 10) |
|
|
|
def forward(self, x): |
|
y = self.conv1(x) |
|
y = self.relu1(y) |
|
y = self.pool1(y) |
|
|
|
y = self.conv2(y) |
|
y = self.relu2(y) |
|
y = self.pool2(y) |
|
|
|
y = y.view(y.shape[0], -1) |
|
|
|
y = self.fc1(y) |
|
y = self.relu3(y) |
|
|
|
y = self.fc2(y) |
|
y = self.relu4(y) |
|
|
|
y = self.fc3(y) |
|
return y |
|
|
|
|
|
def train(model, device, train_loader, optimizer, epoch): |
|
model.train() |
|
for batch_idx, batch in enumerate(train_loader, 0): |
|
data, target = batch["image"].to(device), batch["label"].to(device) |
|
optimizer.zero_grad() |
|
output = model(data.float()) |
|
loss = F.cross_entropy(output, target.long()) |
|
loss.backward() |
|
optimizer.step() |
|
if batch_idx % 100 == 0: |
|
print( |
|
f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} ({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = LeNet().to(device) |
|
optimizer = optim.Adam(model.parameters(), lr=2e-3) |
|
|
|
dataset = load_dataset("ylecun/mnist") |
|
transform = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Resize((32, 32)), |
|
transforms.Normalize(mean=(0.1307,), std=(0.3081,)), |
|
] |
|
) |
|
train_dataset = dataset["train"] |
|
train_dataset.set_format(type="torch") |
|
|
|
def transform_example(example): |
|
|
|
|
|
img = example["image"].numpy() |
|
return {"image": transform(img), "label": example["label"]} |
|
|
|
train_dataset.map(transform_example) |
|
test_dataset = dataset["test"] |
|
test_dataset.set_format(type="torch") |
|
test_dataset.map(transform_example) |
|
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True) |
|
test_loader = DataLoader(test_dataset, batch_size=1024, shuffle=False) |
|
|
|
for epoch in range(1, 15): |
|
train(model, device, train_loader, optimizer, epoch) |
|
|
|
with torch.no_grad(): |
|
correct = 0 |
|
total = 0 |
|
for batch_idx, batch in enumerate(train_loader, 0): |
|
images, labels = batch["image"].to(device), batch["label"].to(device) |
|
outputs = model(images.float()).detach() |
|
predicted = torch.argmax(outputs.data, dim=-1) |
|
total += labels.size(0) |
|
correct += (predicted == labels).sum().item() |
|
|
|
print( |
|
"Accuracy of the network on the 10000 test images: {} %".format( |
|
100 * correct / total |
|
) |
|
) |
|
|
|
torch.save(model.state_dict(), "lenet_mnist_model.pth") |
|
print("Saved PyTorch Model State to lenet_mnist_model.pth") |
|
|