from datasets import load_dataset from torchvision import transforms from torch.utils.data import DataLoader import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import numpy as np class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(256, 120) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(120, 84) self.relu4 = nn.ReLU() self.fc3 = nn.Linear(84, 10) def forward(self, x): y = self.conv1(x) y = self.relu1(y) y = self.pool1(y) y = self.conv2(y) y = self.relu2(y) y = self.pool2(y) y = y.view(y.shape[0], -1) y = self.fc1(y) y = self.relu3(y) y = self.fc2(y) y = self.relu4(y) y = self.fc3(y) return y def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, batch in enumerate(train_loader, 0): data, target = batch["image"].to(device), batch["label"].to(device) optimizer.zero_grad() output = model(data.float()) loss = F.cross_entropy(output, target.long()) loss.backward() optimizer.step() if batch_idx % 100 == 0: print( f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} ({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}" ) if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = LeNet().to(device) optimizer = optim.Adam(model.parameters(), lr=2e-3) dataset = load_dataset("ylecun/mnist") transform = transforms.Compose( [ transforms.ToTensor(), transforms.Resize((32, 32)), transforms.Normalize(mean=(0.1307,), std=(0.3081,)), # MNIST mean and std ] ) train_dataset = dataset["train"] train_dataset.set_format(type="torch") def transform_example(example): # Convert to PIL Image to apply torchvision transforms # img = Image.fromarray(example["image"].astype(np.uint8)) img = example["image"].numpy() return {"image": transform(img), "label": example["label"]} train_dataset.map(transform_example) test_dataset = dataset["test"] test_dataset.set_format(type="torch") test_dataset.map(transform_example) # Data loaders train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=1024, shuffle=False) for epoch in range(1, 15): train(model, device, train_loader, optimizer, epoch) with torch.no_grad(): correct = 0 total = 0 for batch_idx, batch in enumerate(train_loader, 0): images, labels = batch["image"].to(device), batch["label"].to(device) outputs = model(images.float()).detach() predicted = torch.argmax(outputs.data, dim=-1) total += labels.size(0) correct += (predicted == labels).sum().item() print( "Accuracy of the network on the 10000 test images: {} %".format( 100 * correct / total ) ) torch.save(model.state_dict(), "lenet_mnist_model.pth") print("Saved PyTorch Model State to lenet_mnist_model.pth")