File size: 1,397 Bytes
a313729 c469354 a313729 c469354 a313729 c469354 a313729 c469354 a313729 c469354 a313729 c469354 a313729 c469354 a313729 c469354 a313729 c469354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
library_name: transformers
tags: []
---
## How to Get Started with the Model
Use the code below to get started with the model.
```
!pip install git+https://github.com/huggingface/parler-tts.git
```
Quick Start
```
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import torch
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# model = ParlerTTSForConditionalGeneration.from_pretrained("/kaggle/working/parler-tts/output_dir_training", torch_dtype=torch.float16).to(device)
# tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler_tts_mini_v0.1")
model = ParlerTTSForConditionalGeneration.from_pretrained("Cintin/parler-tts-mini-Jenny-colab").to(device)
tokenizer = AutoTokenizer.from_pretrained("Cintin/parler-tts-mini-Jenny-colab")
prompt = "Hey, how are you doing today?"
description = "'Jenny delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks fast.'"
input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
```
To play the audio
```
from IPython.display import Audio
Audio(audio_arr, rate=model.config.sampling_rate)
``` |