File size: 5,024 Bytes
fbb8a30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import open3d as o3d
from pathlib import Path
import os

feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")


def process_image(image_path):
    image_path = Path(image_path)
    image_raw = Image.open(image_path)
    image = image_raw.resize(
        (800, int(800 * image_raw.size[1] / image_raw.size[0])),
        Image.Resampling.LANCZOS)

    # prepare image for the model
    encoding = feature_extractor(image, return_tensors="pt")

    # forward pass
    with torch.no_grad():
        outputs = model(**encoding)
        predicted_depth = outputs.predicted_depth

    # interpolate to original size
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=image.size[::-1],
        mode="bicubic",
        align_corners=False,
    ).squeeze()
    output = prediction.cpu().numpy()
    depth_image = (output * 255 / np.max(output)).astype('uint8')
    try:
        gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
        img = Image.fromarray(depth_image)
        return [img, gltf_path, gltf_path]
    except Exception as e:
        gltf_path = create_3d_obj(
            np.array(image), depth_image, image_path, depth=8)
        img = Image.fromarray(depth_image)
        return [img, gltf_path, gltf_path]
    except:
        print("Error reconstructing 3D model")
        raise Exception("Error reconstructing 3D model")


def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
    depth_o3d = o3d.geometry.Image(depth_image)
    image_o3d = o3d.geometry.Image(rgb_image)
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
        image_o3d, depth_o3d, convert_rgb_to_intensity=False)
    w = int(depth_image.shape[1])
    h = int(depth_image.shape[0])

    camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
    camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)

    pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
        rgbd_image, camera_intrinsic)

    print('normals')
    pcd.normals = o3d.utility.Vector3dVector(
        np.zeros((1, 3)))  # invalidate existing normals
    pcd.estimate_normals(
        search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
    pcd.orient_normals_towards_camera_location(
        camera_location=np.array([0., 0., 1000.]))
    pcd.transform([[1, 0, 0, 0],
                   [0, -1, 0, 0],
                   [0, 0, -1, 0],
                   [0, 0, 0, 1]])
    pcd.transform([[-1, 0, 0, 0],
                   [0, 1, 0, 0],
                   [0, 0, 1, 0],
                   [0, 0, 0, 1]])

    print('run Poisson surface reconstruction')
    with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
        mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
            pcd, depth=depth, width=0, scale=1.1, linear_fit=True)

    voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
    print(f'voxel_size = {voxel_size:e}')
    mesh = mesh_raw.simplify_vertex_clustering(
        voxel_size=voxel_size,
        contraction=o3d.geometry.SimplificationContraction.Average)

    # vertices_to_remove = densities < np.quantile(densities, 0.001)
    # mesh.remove_vertices_by_mask(vertices_to_remove)
    bbox = pcd.get_axis_aligned_bounding_box()
    mesh_crop = mesh.crop(bbox)
    gltf_path = f'./{image_path.stem}.gltf'
    o3d.io.write_triangle_mesh(
        gltf_path, mesh_crop, write_triangle_uvs=True)
    return gltf_path


current_directory = os.path.dirname(__file__)

title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
#examples = [["examples/" + img] for img in os.listdir("examples/")]

# result_image_path = os.path.join(current_directory, '..', 'result.png')
# image_path = Path(result_image_path)


# Load the image
# rawimage = Image.open(image_path)
# image_r = gr.Image(value=rawimage, type="pil", label="Input Image")
#image_r.change(create_visual_demo, [],[])
 
def create_visual_demo():
  iface = gr.Interface(fn=process_image,
    inputs=[gr.Image(
        type="filepath", label="Input Image")],
    outputs=[gr.Image(label="predicted depth", type="pil"),
              gr.Model3D(label="3d mesh reconstruction", clear_color=[
                                1.0, 1.0, 1.0, 1.0]),
              gr.File(label="3d gLTF")],
    title=title,
    description=description,
    #examples=examples,
    live=True,
    allow_flagging="never",
    cache_examples=False)  

#iface.launch(debug=True, enable_queue=False, share=True)