|
import gradio as gr |
|
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard |
|
import os |
|
import spaces |
|
import random |
|
import torch |
|
|
|
is_shared_ui = False |
|
|
|
hf_token = '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' |
|
login(token=hf_token) |
|
|
|
fs = HfFileSystem(token=hf_token) |
|
api = HfApi() |
|
|
|
device="cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL |
|
from diffusers.utils import load_image |
|
from PIL import Image |
|
import torch |
|
import numpy as np |
|
import cv2 |
|
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"diffusers/controlnet-canny-sdxl-1.0", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
def check_use_custom_or_no(value): |
|
if value is True: |
|
return gr.update(visible=True) |
|
else: |
|
return gr.update(visible=False) |
|
|
|
def get_files(file_paths): |
|
last_files = {} |
|
|
|
for file_path in file_paths: |
|
|
|
directory, file_name = file_path.rsplit('/', 1) |
|
|
|
|
|
last_files[directory] = file_name |
|
|
|
|
|
result = list(last_files.values()) |
|
|
|
return result |
|
|
|
def load_model(model_name): |
|
|
|
if model_name == "": |
|
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.") |
|
raise gr.Error("You forgot to define Model ID.") |
|
|
|
|
|
card = ModelCard.load(model_name) |
|
repo_data = card.data.to_dict() |
|
instance_prompt = repo_data.get("instance_prompt") |
|
|
|
if instance_prompt is not None: |
|
print(f"Trigger word: {instance_prompt}") |
|
else: |
|
instance_prompt = "no trigger word needed" |
|
print(f"Trigger word: no trigger word needed") |
|
|
|
|
|
sfts_available_files = fs.glob(f"{model_name}/*safetensors") |
|
sfts_available_files = get_files(sfts_available_files) |
|
|
|
if sfts_available_files == []: |
|
sfts_available_files = ["NO SAFETENSORS FILE"] |
|
|
|
print(f"Safetensors available: {sfts_available_files}") |
|
|
|
return model_name, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True) |
|
|
|
def custom_model_changed(model_name, previous_model): |
|
if model_name == "" and previous_model == "" : |
|
status_message = "" |
|
elif model_name != previous_model: |
|
status_message = "model changed, please reload before any new run" |
|
else: |
|
status_message = "model ready" |
|
return status_message |
|
|
|
def resize_image(input_path, output_path, target_height): |
|
|
|
img = Image.open(input_path) |
|
|
|
|
|
original_width, original_height = img.size |
|
original_aspect_ratio = original_width / original_height |
|
|
|
|
|
new_width = int(target_height * original_aspect_ratio) |
|
|
|
|
|
img = img.resize((new_width, target_height), Image.LANCZOS) |
|
|
|
|
|
img.save(output_path) |
|
|
|
return output_path |
|
|
|
@spaces.GPU |
|
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)): |
|
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
controlnet=controlnet, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
use_safetensors=True |
|
) |
|
|
|
pipe.to(device) |
|
|
|
prompt = prompt |
|
negative_prompt = negative_prompt |
|
|
|
if seed < 0 : |
|
seed = random.randint(0, 423538377342) |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
if image_in == None: |
|
raise gr.Error("You forgot to upload a source image.") |
|
|
|
image_in = resize_image(image_in, "resized_input.jpg", 1024) |
|
|
|
if preprocessor == "canny": |
|
|
|
image = load_image(image_in) |
|
|
|
image = np.array(image) |
|
image = cv2.Canny(image, 100, 200) |
|
image = image[:, :, None] |
|
image = np.concatenate([image, image, image], axis=2) |
|
image = Image.fromarray(image) |
|
|
|
if use_custom_model: |
|
|
|
if model_name == "": |
|
raise gr.Error("you forgot to set a custom model name.") |
|
|
|
custom_model = model_name |
|
|
|
|
|
if weight_name == "NO SAFETENSORS FILE": |
|
pipe.load_lora_weights( |
|
custom_model, |
|
low_cpu_mem_usage = True, |
|
use_auth_token = True |
|
) |
|
|
|
else: |
|
pipe.load_lora_weights( |
|
custom_model, |
|
weight_name = weight_name, |
|
low_cpu_mem_usage = True, |
|
use_auth_token = True |
|
) |
|
|
|
lora_scale=custom_lora_weight |
|
|
|
images = pipe( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
controlnet_conditioning_scale=float(controlnet_conditioning_scale), |
|
guidance_scale = float(guidance_scale), |
|
num_inference_steps=inf_steps, |
|
generator=generator, |
|
cross_attention_kwargs={"scale": lora_scale} |
|
).images |
|
else: |
|
images = pipe( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
controlnet_conditioning_scale=float(controlnet_conditioning_scale), |
|
guidance_scale = float(guidance_scale), |
|
num_inference_steps=inf_steps, |
|
generator=generator, |
|
).images |
|
|
|
images[0].save(f"result.png") |
|
|
|
return f"result.png", seed |
|
|
|
css=""" |
|
#col-container{ |
|
margin: 0 auto; |
|
max-width: 720px; |
|
text-align: left; |
|
} |
|
div#warning-duplicate { |
|
background-color: #ebf5ff; |
|
padding: 0 10px 5px; |
|
margin: 20px 0; |
|
} |
|
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { |
|
color: #0f4592!important; |
|
} |
|
div#warning-duplicate strong { |
|
color: #0f4592; |
|
} |
|
p.actions { |
|
display: flex; |
|
align-items: center; |
|
margin: 20px 0; |
|
} |
|
div#warning-duplicate .actions a { |
|
display: inline-block; |
|
margin-right: 10px; |
|
} |
|
button#load_model_btn{ |
|
height: 46px; |
|
} |
|
#status_info{ |
|
font-size: 0.9em; |
|
} |
|
""" |
|
def create_inference_demo() -> gr.Blocks: |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
if is_shared_ui: |
|
top_description = gr.HTML(f''' |
|
<div class="gr-prose"> |
|
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> |
|
Note: you might want to use a <strong>private</strong> custom LoRa model</h2> |
|
<p class="main-message"> |
|
To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br /> |
|
</p> |
|
<p class="actions"> |
|
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"> |
|
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" /> |
|
</a> |
|
to start using private models and skip the queue |
|
</p> |
|
</div> |
|
''', elem_id="warning-duplicate") |
|
gr.HTML(""" |
|
<h2 style="text-align: center;">SD-XL Control LoRas</h2> |
|
<p style="text-align: center;">Use StableDiffusion XL with <a href="https://huggingface.co/collections/diffusers/sdxl-controlnets-64f9c35846f3f06f5abe351f">Diffusers' SDXL ControlNets</a></p> |
|
|
|
""") |
|
|
|
use_custom_model = gr.Checkbox(label="Use a custom pre-trained LoRa model ? (optional)", value=False, info="To use a private model, you'll need to duplicate the space with your own access token.") |
|
|
|
with gr.Box(visible=False) as custom_model_box: |
|
with gr.Row(): |
|
with gr.Column(): |
|
if not is_shared_ui: |
|
your_username = api.whoami()["name"] |
|
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora']) |
|
model_names = [item.modelId for item in my_models] |
|
|
|
if not is_shared_ui: |
|
custom_model = gr.Dropdown( |
|
label = "Your custom model ID", |
|
info="You can pick one of your private models", |
|
choices = model_names, |
|
allow_custom_value = True |
|
|
|
) |
|
else: |
|
custom_model = gr.Textbox( |
|
label="Your custom model ID", |
|
placeholder="your_username/your_trained_model_name", |
|
info="Make sure your model is set to PUBLIC" |
|
) |
|
|
|
weight_name = gr.Dropdown( |
|
label="Safetensors file", |
|
|
|
info="specify which one if model has several .safetensors files", |
|
allow_custom_value=True, |
|
visible = False |
|
) |
|
with gr.Column(): |
|
with gr.Group(): |
|
load_model_btn = gr.Button("Load my model", elem_id="load_model_btn") |
|
previous_model = gr.Textbox( |
|
visible = False |
|
) |
|
model_status = gr.Textbox( |
|
label = "model status", |
|
show_label = False, |
|
elem_id = "status_info" |
|
) |
|
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False) |
|
|
|
image_in = gr.Image(source="upload", type="filepath") |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
with gr.Group(): |
|
prompt = gr.Textbox(label="Prompt") |
|
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured") |
|
with gr.Group(): |
|
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5) |
|
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25) |
|
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9) |
|
|
|
with gr.Column(): |
|
with gr.Group(): |
|
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available") |
|
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5) |
|
with gr.Group(): |
|
seed = gr.Slider( |
|
label="Seed", |
|
info = "-1 denotes a random seed", |
|
minimum=-1, |
|
maximum=423538377342, |
|
step=1, |
|
value=-1 |
|
) |
|
last_used_seed = gr.Number( |
|
label = "Last used seed", |
|
info = "the seed used in the last generation", |
|
) |
|
|
|
|
|
submit_btn = gr.Button("Submit") |
|
|
|
result = gr.Image(label="Result") |
|
|
|
use_custom_model.change( |
|
fn = check_use_custom_or_no, |
|
inputs =[use_custom_model], |
|
outputs = [custom_model_box], |
|
queue = False |
|
) |
|
custom_model.blur( |
|
fn=custom_model_changed, |
|
inputs = [custom_model, previous_model], |
|
outputs = [model_status], |
|
queue = False |
|
) |
|
load_model_btn.click( |
|
fn = load_model, |
|
inputs=[custom_model], |
|
outputs = [previous_model, model_status, weight_name, trigger_word], |
|
queue = False |
|
) |
|
submit_btn.click( |
|
fn = infer, |
|
inputs = [use_custom_model, custom_model, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed], |
|
outputs = [result, last_used_seed] |
|
) |
|
|
|
return demo |
|
|
|
|
|
|
|
|