import gradio as gr import torch import os import shutil import requests import subprocess from subprocess import getoutput from huggingface_hub import login, HfFileSystem, snapshot_download, HfApi, create_repo is_gpu_associated = torch.cuda.is_available() is_shared_ui = False hf_token = 'HF TOKEN' fs = HfFileSystem(token=hf_token) api = HfApi() if is_gpu_associated: gpu_info = getoutput('nvidia-smi') if("A10G" in gpu_info): which_gpu = "A10G" elif("T4" in gpu_info): which_gpu = "T4" else: which_gpu = "CPU" def check_upload_or_no(value): if value is True: return gr.update(visible=True) else: return gr.update(visible=False) def load_images_to_dataset(images, dataset_name): if is_shared_ui: raise gr.Error("This Space only works in duplicated instances") if dataset_name == "": raise gr.Error("You forgot to name your new dataset. ") # Create the directory if it doesn't exist my_working_directory = f"my_working_directory_for_{dataset_name}" if not os.path.exists(my_working_directory): os.makedirs(my_working_directory) # Assuming 'images' is a list of image file paths for idx, image in enumerate(images): # Get the base file name (without path) from the original location image_name = os.path.basename(image.name) # Construct the destination path in the working directory destination_path = os.path.join(my_working_directory, image_name) # Copy the image from the original location to the working directory shutil.copy(image.name, destination_path) # Print the image name and its corresponding save path print(f"Image {idx + 1}: {image_name} copied to {destination_path}") path_to_folder = my_working_directory your_username = api.whoami(token=hf_token)["name"] repo_id = f"{your_username}/{dataset_name}" create_repo(repo_id=repo_id, repo_type="dataset", token=hf_token) api.upload_folder( folder_path=path_to_folder, repo_id=repo_id, repo_type="dataset", token=hf_token ) return "Done, your dataset is ready and loaded for the training step!", repo_id def swap_hardware(hf_token, hardware="cpu-basic"): hardware_url = f"https://huggingface.co/spaces/ClaireOzzz/train-dreambooth-lora-sdxl/hardware" headers = { "authorization" : f"Bearer {hf_token}"} body = {'flavor': hardware} requests.post(hardware_url, json = body, headers=headers) def swap_sleep_time(hf_token,sleep_time): sleep_time_url = f"https://huggingface.co/api/spaces/ClaireOzzz/train-dreambooth-lora-sdxl/sleeptime" headers = { "authorization" : f"Bearer {hf_token}"} body = {'seconds':sleep_time} requests.post(sleep_time_url,json=body,headers=headers) def get_sleep_time(hf_token): sleep_time_url = f"https://huggingface.co/api/spaces/ClaireOzzz/train-dreambooth-lora-sdxl" headers = { "authorization" : f"Bearer {hf_token}"} response = requests.get(sleep_time_url,headers=headers) try: gcTimeout = response.json()['runtime']['gcTimeout'] except: gcTimeout = None return gcTimeout def write_to_community(title, description,hf_token): api.create_discussion(repo_id=os.environ['ClaireOzzz/train-dreambooth-lora-sdxl'], title=title, description=description,repo_type="space", token=hf_token) def set_accelerate_default_config(): try: subprocess.run(["accelerate", "config", "default"], check=True) print("Accelerate default config set successfully!") except subprocess.CalledProcessError as e: print(f"An error occurred: {e}") def train_dreambooth_lora_sdxl(dataset_id, instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu): script_filename = "train_dreambooth_lora_sdxl.py" # Assuming it's in the same folder command = [ "accelerate", "launch", script_filename, # Use the local script "--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0", "--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix", f"--dataset_id={dataset_id}", f"--instance_data_dir={instance_data_dir}", f"--output_dir={lora_trained_xl_folder}", "--mixed_precision=fp16", f"--instance_prompt={instance_prompt}", "--resolution=1024", "--train_batch_size=2", "--gradient_accumulation_steps=2", "--gradient_checkpointing", "--learning_rate=1e-4", "--lr_scheduler=constant", "--lr_warmup_steps=0", "--enable_xformers_memory_efficient_attention", "--mixed_precision=fp16", "--use_8bit_adam", f"--max_train_steps={max_train_steps}", f"--checkpointing_steps={checkpoint_steps}", "--seed=0", "--push_to_hub", f"--hub_token={hf_token}" ] try: subprocess.run(command, check=True) print("Training is finished!") if remove_gpu: swap_hardware(hf_token, "cpu-basic") else: swap_sleep_time(hf_token, 300) except subprocess.CalledProcessError as e: print(f"An error occurred: {e}") title="There was an error on during your training" description=f''' Unfortunately there was an error during training your {lora_trained_xl_folder} model. Please check it out below. Feel free to report this issue to [SD-XL Dreambooth LoRa Training](https://huggingface.co/spaces/fffiloni/train-dreambooth-lora-sdxl): ``` {str(e)} ``` ''' if remove_gpu: swap_hardware(hf_token, "cpu-basic") else: swap_sleep_time(hf_token, 300) #write_to_community(title,description,hf_token) def main(dataset_id, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu): if is_shared_ui: raise gr.Error("This Space only works in duplicated instances") if not is_gpu_associated: raise gr.Error("Please associate a T4 or A10G GPU for this Space") if dataset_id == "": raise gr.Error("You forgot to specify an image dataset") if instance_prompt == "": raise gr.Error("You forgot to specify a concept prompt") if lora_trained_xl_folder == "": raise gr.Error("You forgot to name the output folder for your model") sleep_time = get_sleep_time(hf_token) if sleep_time: swap_sleep_time(hf_token, -1) gr.Warning("If you did not check the `Remove GPU After training`, don't forget to remove the GPU attribution after you are done. ") dataset_repo = dataset_id # Automatically set local_dir based on the last part of dataset_repo repo_parts = dataset_repo.split("/") local_dir = f"./{repo_parts[-1]}" # Use the last part of the split # Check if the directory exists and create it if necessary if not os.path.exists(local_dir): os.makedirs(local_dir) gr.Info("Downloading dataset ...") snapshot_download( dataset_repo, local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes", token=hf_token ) set_accelerate_default_config() gr.Info("Training begins ...") instance_data_dir = repo_parts[-1] train_dreambooth_lora_sdxl(dataset_id, instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu) your_username = api.whoami(token=hf_token)["name"] return f"Done, your trained model has been stored in your models library: {your_username}/{lora_trained_xl_folder}" css=""" #col-container {max-width: 780px; margin-left: auto; margin-right: auto;} #upl-dataset-group {background-color: none!important;} div#warning-ready { background-color: #ecfdf5; padding: 0 10px 5px; margin: 20px 0; } div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p { color: #057857!important; } div#warning-duplicate { background-color: #ebf5ff; padding: 0 10px 5px; margin: 20px 0; } div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { color: #0f4592!important; } div#warning-duplicate strong { color: #0f4592; } p.actions { display: flex; align-items: center; margin: 20px 0; } div#warning-duplicate .actions a { display: inline-block; margin-right: 10px; } div#warning-setgpu { background-color: #fff4eb; padding: 0 10px 5px; margin: 20px 0; } div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p { color: #92220f!important; } div#warning-setgpu a, div#warning-setgpu b { color: #91230f; } div#warning-setgpu p.actions > a { display: inline-block; background: #1f1f23; border-radius: 40px; padding: 6px 24px; color: antiquewhite; text-decoration: none; font-weight: 600; font-size: 1.2em; } button#load-dataset-btn{ min-height: 60px; } """ def create_training_demo() -> gr.Blocks: with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): if is_shared_ui: top_description = gr.HTML(f'''
to start training your own image model
# You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned off. #
#There's only one step left before you can train your model: attribute a T4-small or A10G-small GPU to it (via the Settings tab) and run the training below. # You will be billed by the minute from when you activate the GPU until when it is turned off.
# #