File size: 7,240 Bytes
cb9e677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import operator
from functools import partial, reduce
from typing import Iterable, List, Optional

import torch
import torch.distributed.algorithms._checkpoint.checkpoint_wrapper as torch_ckpt
import torch.nn as nn
from xformers.ops.fmha import memory_efficient_attention
from xformers.ops.fmha.attn_bias import AttentionBias, BlockDiagonalCausalMask

from .args import ModelArgs
from .lora import LoRALinear
from .moe import MoeLayer
from .rope import apply_rotary_emb, precompute_freqs_cis


def repeat_kv(keys: torch.Tensor, values: torch.Tensor, repeats: int, dim: int):
    keys = torch.repeat_interleave(keys, repeats=repeats, dim=dim)
    values = torch.repeat_interleave(values, repeats=repeats, dim=dim)
    return keys, values


def maybe_lora_layer(
    args: ModelArgs, rank: Optional[int] = None
) -> partial[LoRALinear] | type[nn.Linear]:
    MaybeLora: partial[LoRALinear] | type[nn.Linear]
    if not args.lora.enable:
        return nn.Linear

    rank = rank or args.lora.rank
    scaling = args.lora.scaling
    dropout = args.lora.dropout

    MaybeLora = partial(
        LoRALinear,
        rank=rank,
        scaling=scaling,
        dropout=dropout,
    )

    return MaybeLora


class Attention(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()
        self.args = args

        self.n_heads: int = args.n_heads
        self.n_kv_heads: int = args.n_kv_heads
        self.head_dim: int = args.head_dim

        self.repeats = self.n_heads // self.n_kv_heads

        self.scale = self.args.head_dim**-0.5

        MaybeLora = maybe_lora_layer(args)

        self.wq = MaybeLora(args.dim, args.n_heads * args.head_dim, bias=False)
        self.wk = MaybeLora(args.dim, args.n_kv_heads * args.head_dim, bias=False)
        self.wv = MaybeLora(args.dim, args.n_kv_heads * args.head_dim, bias=False)

        self.wo = MaybeLora(args.n_heads * args.head_dim, args.dim, bias=False)

    def forward(
        self,
        x: torch.Tensor,
        freqs_cis: torch.Tensor,
        mask: AttentionBias,
    ) -> torch.Tensor:
        seqlen_sum, _ = x.shape

        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)

        xq = xq.view(seqlen_sum, self.n_heads, self.args.head_dim)
        xk = xk.view(seqlen_sum, self.n_kv_heads, self.args.head_dim)
        xv = xv.view(seqlen_sum, self.n_kv_heads, self.args.head_dim)
        xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)

        key, val = xk, xv

        # Repeat keys and values to match number of query heads
        key, val = repeat_kv(key, val, self.repeats, dim=1)

        # xformers requires (B=1, S, H, D)
        xq, key, val = xq[None, ...], key[None, ...], val[None, ...]
        output = memory_efficient_attention(xq, key, val, mask)

        return self.wo(output.view(seqlen_sum, -1))


class FeedForward(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()

        MaybeLora = maybe_lora_layer(args)
        self.w1 = MaybeLora(args.dim, args.hidden_dim, bias=False)
        self.w2 = MaybeLora(args.hidden_dim, args.dim, bias=False)
        self.w3 = MaybeLora(args.dim, args.hidden_dim, bias=False)

    def forward(self, x) -> torch.Tensor:
        return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


class TransformerBlock(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()
        self.n_heads = args.n_heads
        self.dim = args.dim
        self.attention = Attention(args)

        self.feed_forward: MoeLayer | FeedForward
        if args.moe is not None:
            self.feed_forward = MoeLayer(
                experts=[FeedForward(args=args) for _ in range(args.moe.num_experts)],
                gate=nn.Linear(args.dim, args.moe.num_experts, bias=False),
                moe_args=args.moe,
            )
        else:
            self.feed_forward = FeedForward(args=args)

        self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
        self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
        self.args = args

    def forward(
        self,
        x: torch.Tensor,
        freqs_cis: torch.Tensor,
        att_mask: AttentionBias,
    ) -> torch.Tensor:
        r = self.attention(self.attention_norm(x), freqs_cis, att_mask)
        h = x + r

        r = self.feed_forward(self.ffn_norm(h))
        out = h + r

        return out


class Transformer(nn.Module):
    def __init__(self, args: ModelArgs, checkpoint: bool = False):
        super().__init__()
        self.args = args
        self.vocab_size = args.vocab_size
        self.n_layers = args.n_layers
        assert self.vocab_size > 0
        self.tok_embeddings = torch.nn.Embedding(args.vocab_size, args.dim)
        self.layers = torch.nn.ModuleList()
        for _ in range(args.n_layers):
            block: torch.nn.Module = TransformerBlock(args=args)
            if checkpoint:
                # activate gradient checkpointing as, see: https://pytorch.org/docs/stable/checkpoint.html
                non_reentrant_wrapper = partial(
                    torch_ckpt.checkpoint_wrapper,
                    checkpoint_impl=torch_ckpt.CheckpointImpl.NO_REENTRANT,
                )
                block = non_reentrant_wrapper(block)

            self.layers.append(block)

        self.norm = RMSNorm(args.dim, eps=args.norm_eps)

        self.output = torch.nn.Linear(
            args.dim,
            args.vocab_size,
            bias=False,
        )

        # set lazily
        self._freqs_cis = None

    @property
    def dtype(self) -> torch.dtype:
        return self.tok_embeddings.weight.dtype

    @property
    def device(self) -> torch.device:
        return self.tok_embeddings.weight.device

    @property
    def freqs_cis(self):
        # lazy init
        device = next(iter(self.parameters())).device
        if self._freqs_cis is None:
            self._freqs_cis = precompute_freqs_cis(
                self.args.head_dim, 128_000, theta=self.args.rope_theta, device=device
            )

        return self._freqs_cis

    def forward(
        self,
        input_ids: torch.Tensor,
        seqlens: List[int],
    ) -> torch.Tensor:
        assert sum(seqlens) == input_ids.shape[0], (sum(seqlens), input_ids.shape[0])

        h = self.tok_embeddings(input_ids)
        positions = positions_from_sizes(seqlens, self.freqs_cis.device)
        att_mask = BlockDiagonalCausalMask.from_seqlens(seqlens)

        freqs_cis = self.freqs_cis[positions].to(device=h.device)

        for layer in self.layers:
            h = layer(h, freqs_cis, att_mask)

        return self.output(self.norm(h)).float()


def positions_from_sizes(sizes: Iterable[int], device):
    return torch.tensor(
        reduce(operator.iadd, [list(range(s)) for s in sizes], []),
        dtype=torch.long,
        device=device,
    )