CHEMISTral7Bv0.3 / finetune /checkpointing.py
Clemspace's picture
Initial model upload
cb9e677
raw
history blame
8.67 kB
import json
import logging
import shutil
from pathlib import Path
from typing import Dict, List, Optional, Union
import safetensors.torch
import torch
from mistral_common.tokens.tokenizers.sentencepiece import InstructTokenizerBase
from torch.distributed import barrier
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel
from model.transformer import LoRALinear
from .distributed import get_rank, get_world_size
from .utils import TrainState
logger = logging.getLogger("checkpointing")
def main_logger_info(message: str) -> None:
if get_rank() == 0:
logger.info(message)
class Checkpointer:
"""A class to save PyTorch model and optimizer states"""
def __init__(
self,
model: FullyShardedDataParallel,
state: TrainState,
run_dir: Union[Path, str],
optimizer: Optional[torch.optim.Optimizer] = None,
num_ckpt_keep: Optional[int] = None,
):
self.model = model
self.optimizer = optimizer
self.state = state
self.run_dir = Path(run_dir)
self.rank = get_rank()
self.num_ckpt_keep = num_ckpt_keep
@property
def ckpt_dir(self) -> Path:
return self.run_dir / "checkpoints"
@property
def dst_dir(self) -> Path:
return self.ckpt_dir / f"checkpoint_{self.state.step:06d}" / "consolidated"
@staticmethod
def consolidated_path(
ckpt_dir: Path, use_safetensors: bool, save_only_lora: Optional[bool] = False
) -> Path:
suffix = "safetensors" if use_safetensors else "00.pth"
prefix = "lora" if save_only_lora else "consolidated"
return ckpt_dir / f"{prefix}.{suffix}"
@staticmethod
def _tmp(ckpt_dir: Path) -> Path:
return ckpt_dir.with_name(f"tmp.{ckpt_dir.name}")
def write_params_info(self, tmp_dst: Path):
params_path = tmp_dst / "params.json"
with open(params_path, "w") as f:
model_args = self.model.args.to_dict()
f.write(json.dumps(model_args, indent=4))
def delete_old_ckpts(self) -> List[Path]:
all_saved_ckpts = [d for d in self.ckpt_dir.iterdir() if d.is_dir()]
# Sort directories by creation time (oldest to newest)
all_saved_ckpts.sort(key=lambda x: x.stat().st_ctime, reverse=True)
ckpts_to_delete = all_saved_ckpts[self.num_ckpt_keep :]
for ckpt_to_delete in ckpts_to_delete:
try:
shutil.rmtree(ckpt_to_delete)
main_logger_info(f"Deleted ckpt: {ckpt_to_delete}")
except OSError as e:
main_logger_info(f"Error deleting directory {ckpt_to_delete}: {e}")
return ckpts_to_delete
@staticmethod
def get_lora_states(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
return {k: v for k, v in state_dict.items() if "lora" in k}
@staticmethod
def get_non_lora_states(
state_dict: Dict[str, torch.Tensor]
) -> Dict[str, torch.Tensor]:
return {
k: v
for k, v in state_dict.items()
if not any(l_key in k for l_key in ["lora", "frozen"])
}
@torch.no_grad()
def retrieve_save_states(
self, save_only_lora: bool, save_dtype: torch.dtype
) -> Dict[str, torch.Tensor]:
if save_only_lora:
assert (
self.model.args.lora.enable
), "Cannot save LoRA checkpoint as LoRA training is not enabled."
# remove all potential hooks
for module in self.model.modules():
if isinstance(module, LoRALinear) and hasattr(module, "_merge_lora_handle"):
module._merge_lora_handle.remove() # type: ignore
# merge weights if we don't just save LoRA
if not save_only_lora:
def merge_lora(
m: torch.nn.Module,
destination: Dict[str, torch.Tensor],
prefix: str,
*args,
):
weight = m.merge_weight() # type: ignore
destination[prefix + "weight"] = weight
for module in self.model.modules():
if isinstance(module, LoRALinear):
module._merge_lora_handle = module._register_state_dict_hook(
merge_lora
)
offload_to_cpu = get_world_size() > 1
if save_only_lora:
def is_trainable_fsdp(
module: Union[torch.nn.Module, FullyShardedDataParallel]
):
is_fsdp = isinstance(module, FullyShardedDataParallel)
all_params_have_grads = is_fsdp and all(
p.requires_grad is True for p in module.parameters()
)
# need to make sure only lowest fsdp wrap is used
is_leaf_node = is_fsdp and len(list(module.module.children())) == 0 # type: ignore
return is_fsdp and all_params_have_grads and is_leaf_node
# extract all modules with only trainable weights
modules = {
k: m for k, m in self.model.named_modules() if is_trainable_fsdp(m)
}
states = {}
for key, module in modules.items():
assert isinstance(
module, FullyShardedDataParallel
), "`module` should be an instance of `FullyShardedDataParallel`"
parent_prefix = key.replace("_fsdp_wrapped_module.", "").replace(
"_checkpoint_wrapped_module.", ""
)
with module.summon_full_params(
module, writeback=True, offload_to_cpu=offload_to_cpu
):
states.update(
{
f"{parent_prefix}.{k}": v.to(dtype=save_dtype)
for k, v in module.state_dict().items()
}
)
else:
# make sure you have enough CPU RAM available to save the full model
assert isinstance(
self.model, FullyShardedDataParallel
), "`self.model` should be an instance of `FullyShardedDataParallel`"
with self.model.summon_full_params(
self.model, writeback=True, offload_to_cpu=offload_to_cpu
):
states = self.get_non_lora_states(self.model.state_dict())
states = {k: v.to(dtype=save_dtype) for k, v in states.items()}
states = dict(sorted(states.items()))
return states
@staticmethod
def save_tokenizer(instruct_tokenizer: InstructTokenizerBase, tmp_dst: Path):
serialized_spm = instruct_tokenizer.tokenizer._model.serialized_model_proto() # type: ignore
tokenizer_path = tmp_dst / "tokenizer.model.v3"
with open(tokenizer_path, "wb") as f:
f.write(serialized_spm)
@torch.no_grad()
def save_checkpoint(
self,
save_only_lora: bool,
dtype: torch.dtype = torch.float16,
instruct_tokenizer: Optional[InstructTokenizerBase] = None,
):
tmp_dst = self._tmp(self.dst_dir)
main_logger_info(
f"Dumping checkpoint in {self.dst_dir} using tmp name: {tmp_dst.name}"
)
assert not self.dst_dir.exists(), f"dst exists {self.dst_dir}"
tmp_dst.mkdir(parents=True, exist_ok=True)
states: Dict[str, torch.Tensor] = self.retrieve_save_states(
save_only_lora, dtype
)
barrier()
if self.rank == 0:
# save checkpoint in tmp path
safetensors.torch.save_file(
states,
self.consolidated_path(
tmp_dst, use_safetensors=True, save_only_lora=save_only_lora
), # always use safetensors for checkpointing
)
self.write_params_info(tmp_dst)
# save tokenizer
if instruct_tokenizer is not None:
self.save_tokenizer(instruct_tokenizer, tmp_dst)
assert not self.dst_dir.exists(), f"should not happen! {self.dst_dir}"
tmp_dst.rename(self.dst_dir)
logger.info(
f"Done dumping checkpoint in {self.dst_dir} for step: {self.state.step}"
)
# delete last n checkpoints
if self.num_ckpt_keep is not None:
ckpts_to_delete = self.delete_old_ckpts()
logger.info(
f"Done deleting checkpoints {', '.join([str(c) for c in ckpts_to_delete])}"
)
main_logger_info("Done!")