Create modeling_t5.py
Browse files- modeling_t5.py +1987 -0
modeling_t5.py
ADDED
@@ -0,0 +1,1987 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch T5 model."""
|
16 |
+
|
17 |
+
|
18 |
+
import copy
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import warnings
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
from typing import Optional, Tuple, Union, List, Callable
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import CrossEntropyLoss
|
28 |
+
from torch.utils.checkpoint import checkpoint
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.adapters.composition import adjust_tensors_for_parallel
|
32 |
+
from transformers.adapters.context import ForwardContext
|
33 |
+
from transformers.adapters.lora import Linear as LoRALinear
|
34 |
+
from transformers.adapters.mixins.t5 import (
|
35 |
+
T5CrossAttentionLayerAdaptersMixin,
|
36 |
+
T5FFLayerAdaptersMixin,
|
37 |
+
T5ModelAdaptersMixin,
|
38 |
+
T5ModelWithHeadsAdaptersMixin,
|
39 |
+
T5SelfAttentionLayerAdaptersMixin,
|
40 |
+
)
|
41 |
+
from transformers.adapters.model_mixin import InvertibleAdaptersMixin
|
42 |
+
from transformers.adapters.prefix_tuning import PrefixTuningShim
|
43 |
+
from transformers.modeling_outputs import (
|
44 |
+
BaseModelOutput,
|
45 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
46 |
+
Seq2SeqLMOutput,
|
47 |
+
Seq2SeqModelOutput,
|
48 |
+
)
|
49 |
+
from transformers.modeling_utils import PreTrainedModel
|
50 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
|
51 |
+
from transformers.utils import (
|
52 |
+
DUMMY_INPUTS,
|
53 |
+
DUMMY_MASK,
|
54 |
+
add_start_docstrings,
|
55 |
+
add_start_docstrings_to_model_forward,
|
56 |
+
is_torch_fx_proxy,
|
57 |
+
logging,
|
58 |
+
replace_return_docstrings,
|
59 |
+
)
|
60 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
61 |
+
from transformers.models.t5.configuration_t5 import T5Config
|
62 |
+
|
63 |
+
|
64 |
+
logger = logging.get_logger(__name__)
|
65 |
+
|
66 |
+
_CONFIG_FOR_DOC = "T5Config"
|
67 |
+
_CHECKPOINT_FOR_DOC = "t5-small"
|
68 |
+
|
69 |
+
####################################################
|
70 |
+
# This dict contains ids and associated url
|
71 |
+
# for the pretrained weights provided with the models
|
72 |
+
####################################################
|
73 |
+
T5_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
74 |
+
"t5-small",
|
75 |
+
"t5-base",
|
76 |
+
"t5-large",
|
77 |
+
"t5-3b",
|
78 |
+
"t5-11b",
|
79 |
+
# See all T5 models at https://huggingface.co/models?filter=t5
|
80 |
+
]
|
81 |
+
|
82 |
+
|
83 |
+
####################################################
|
84 |
+
# This is a conversion method from TF 1.0 to PyTorch
|
85 |
+
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
|
86 |
+
####################################################
|
87 |
+
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
|
88 |
+
"""Load tf checkpoints in a pytorch model."""
|
89 |
+
try:
|
90 |
+
import re
|
91 |
+
|
92 |
+
import numpy as np
|
93 |
+
import tensorflow as tf
|
94 |
+
except ImportError:
|
95 |
+
logger.error(
|
96 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
97 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
98 |
+
)
|
99 |
+
raise
|
100 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
101 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
102 |
+
# Load weights from TF model
|
103 |
+
init_vars = tf.train.list_variables(tf_path)
|
104 |
+
names = []
|
105 |
+
tf_weights = {}
|
106 |
+
for name, shape in init_vars:
|
107 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
108 |
+
array = tf.train.load_variable(tf_path, name)
|
109 |
+
names.append(name)
|
110 |
+
tf_weights[name] = array
|
111 |
+
|
112 |
+
for txt_name in names:
|
113 |
+
name = txt_name.split("/")
|
114 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
115 |
+
# which are not required for using pretrained model
|
116 |
+
if any(
|
117 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
118 |
+
for n in name
|
119 |
+
):
|
120 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
121 |
+
tf_weights.pop(txt_name, None)
|
122 |
+
continue
|
123 |
+
if "_slot_" in name[-1]:
|
124 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
125 |
+
tf_weights.pop(txt_name, None)
|
126 |
+
continue
|
127 |
+
pointer = model
|
128 |
+
array = tf_weights[txt_name]
|
129 |
+
|
130 |
+
for m_name in name:
|
131 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
132 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
133 |
+
else:
|
134 |
+
scope_names = [m_name]
|
135 |
+
if scope_names[0] in ["kernel", "scale", "embedding"]:
|
136 |
+
pointer = getattr(pointer, "weight")
|
137 |
+
elif scope_names[0] == "self_attention":
|
138 |
+
pointer = getattr(pointer, "layer")
|
139 |
+
pointer = pointer[0]
|
140 |
+
elif scope_names[0] == "enc_dec_attention":
|
141 |
+
pointer = getattr(pointer, "layer")
|
142 |
+
pointer = pointer[1]
|
143 |
+
elif scope_names[0] == "dense_relu_dense":
|
144 |
+
pointer = getattr(pointer, "layer")
|
145 |
+
pointer = pointer[2]
|
146 |
+
elif scope_names[0] == "rms_norm":
|
147 |
+
if hasattr(pointer, "layer_norm"):
|
148 |
+
pointer = getattr(pointer, "layer_norm")
|
149 |
+
elif hasattr(pointer, "final_layer_norm"):
|
150 |
+
pointer = getattr(pointer, "final_layer_norm")
|
151 |
+
elif scope_names[0] == "scale":
|
152 |
+
pointer = getattr(pointer, "weight")
|
153 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
154 |
+
pointer = getattr(pointer, "bias")
|
155 |
+
elif scope_names[0] == "squad":
|
156 |
+
pointer = getattr(pointer, "classifier")
|
157 |
+
elif scope_names[0] == "decoder" and name[1] == "logits":
|
158 |
+
continue
|
159 |
+
elif scope_names[0] == "logits":
|
160 |
+
pointer = getattr(pointer, "lm_head")
|
161 |
+
elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
|
162 |
+
pointer = getattr(pointer, f"wi_{scope_names[1]}")
|
163 |
+
continue
|
164 |
+
else:
|
165 |
+
try:
|
166 |
+
pointer = getattr(pointer, scope_names[0])
|
167 |
+
except AttributeError:
|
168 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
169 |
+
continue
|
170 |
+
if len(scope_names) >= 2:
|
171 |
+
num = int(scope_names[1])
|
172 |
+
pointer = pointer[num]
|
173 |
+
if scope_names[0] not in ["kernel", "scale", "embedding"]:
|
174 |
+
pointer = getattr(pointer, "weight")
|
175 |
+
if scope_names[0] != "embedding":
|
176 |
+
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
|
177 |
+
array = np.transpose(array)
|
178 |
+
try:
|
179 |
+
assert (
|
180 |
+
pointer.shape == array.shape
|
181 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
182 |
+
except AssertionError as e:
|
183 |
+
e.args += (pointer.shape, array.shape)
|
184 |
+
raise
|
185 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
186 |
+
pointer.data = torch.from_numpy(array.astype(np.float32))
|
187 |
+
tf_weights.pop(txt_name, None)
|
188 |
+
|
189 |
+
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
|
190 |
+
return model
|
191 |
+
|
192 |
+
|
193 |
+
####################################################
|
194 |
+
# PyTorch Models are constructed by sub-classing
|
195 |
+
# - torch.nn.Module for the layers and
|
196 |
+
# - PreTrainedModel for the models (it-self a sub-class of nn.Module)
|
197 |
+
####################################################
|
198 |
+
PARALLELIZE_DOCSTRING = r"""
|
199 |
+
This is an experimental feature and is a subject to change at a moment's notice.
|
200 |
+
|
201 |
+
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
202 |
+
it will evenly distribute blocks across all devices.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
206 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
207 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
208 |
+
have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
|
209 |
+
following number of attention modules:
|
210 |
+
|
211 |
+
- t5-small: 6
|
212 |
+
- t5-base: 12
|
213 |
+
- t5-large: 24
|
214 |
+
- t5-3b: 24
|
215 |
+
- t5-11b: 24
|
216 |
+
|
217 |
+
Example:
|
218 |
+
|
219 |
+
```python
|
220 |
+
# Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules:
|
221 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-3b")
|
222 |
+
device_map = {
|
223 |
+
0: [0, 1, 2],
|
224 |
+
1: [3, 4, 5, 6, 7, 8, 9],
|
225 |
+
2: [10, 11, 12, 13, 14, 15, 16],
|
226 |
+
3: [17, 18, 19, 20, 21, 22, 23],
|
227 |
+
}
|
228 |
+
model.parallelize(device_map)
|
229 |
+
```
|
230 |
+
"""
|
231 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
232 |
+
Moves the model to cpu from a model parallel state.
|
233 |
+
|
234 |
+
Example:
|
235 |
+
|
236 |
+
```python
|
237 |
+
# On a 4 GPU machine with t5-3b:
|
238 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-3b")
|
239 |
+
device_map = {
|
240 |
+
0: [0, 1, 2],
|
241 |
+
1: [3, 4, 5, 6, 7, 8, 9],
|
242 |
+
2: [10, 11, 12, 13, 14, 15, 16],
|
243 |
+
3: [17, 18, 19, 20, 21, 22, 23],
|
244 |
+
}
|
245 |
+
model.parallelize(device_map) # Splits the model across several devices
|
246 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
247 |
+
```
|
248 |
+
"""
|
249 |
+
|
250 |
+
|
251 |
+
class T5LayerNorm(nn.Module):
|
252 |
+
def __init__(self, hidden_size, eps=1e-6):
|
253 |
+
"""
|
254 |
+
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
|
255 |
+
"""
|
256 |
+
super().__init__()
|
257 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
258 |
+
self.variance_epsilon = eps
|
259 |
+
|
260 |
+
def forward(self, hidden_states):
|
261 |
+
|
262 |
+
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
263 |
+
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
|
264 |
+
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
265 |
+
# half-precision inputs is done in fp32
|
266 |
+
|
267 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
268 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
269 |
+
|
270 |
+
# convert into half-precision if necessary
|
271 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
272 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
273 |
+
|
274 |
+
return self.weight * hidden_states
|
275 |
+
|
276 |
+
|
277 |
+
try:
|
278 |
+
from apex.normalization import FusedRMSNorm
|
279 |
+
|
280 |
+
T5LayerNorm = FusedRMSNorm # noqa
|
281 |
+
|
282 |
+
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm")
|
283 |
+
except ImportError:
|
284 |
+
# using the normal T5LayerNorm
|
285 |
+
pass
|
286 |
+
except Exception:
|
287 |
+
logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm")
|
288 |
+
pass
|
289 |
+
|
290 |
+
ALL_LAYERNORM_LAYERS.append(T5LayerNorm)
|
291 |
+
|
292 |
+
|
293 |
+
class T5DenseActDense(nn.Module):
|
294 |
+
def __init__(self, config: T5Config):
|
295 |
+
super().__init__()
|
296 |
+
self.wi = LoRALinear(config.d_model, config.d_ff, "intermediate", config, bias=False)
|
297 |
+
self.wo = LoRALinear(config.d_ff, config.d_model, "output", config, bias=False)
|
298 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
299 |
+
self.act = ACT2FN[config.dense_act_fn]
|
300 |
+
|
301 |
+
def forward(self, hidden_states):
|
302 |
+
hidden_states = self.wi(hidden_states)
|
303 |
+
hidden_states = self.act(hidden_states)
|
304 |
+
hidden_states = self.dropout(hidden_states)
|
305 |
+
if hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8:
|
306 |
+
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
307 |
+
hidden_states = self.wo(hidden_states)
|
308 |
+
return hidden_states
|
309 |
+
|
310 |
+
|
311 |
+
class T5DenseGatedActDense(nn.Module):
|
312 |
+
def __init__(self, config: T5Config):
|
313 |
+
super().__init__()
|
314 |
+
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
315 |
+
self.wi_1 = LoRALinear(config.d_model, config.d_ff, "intermediate", config, bias=False)
|
316 |
+
self.wo = LoRALinear(config.d_ff, config.d_model, "output", config, bias=False)
|
317 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
318 |
+
self.act = ACT2FN[config.dense_act_fn]
|
319 |
+
|
320 |
+
def forward(self, hidden_states):
|
321 |
+
hidden_gelu = self.act(self.wi_0(hidden_states))
|
322 |
+
hidden_linear = self.wi_1(hidden_states)
|
323 |
+
hidden_states = hidden_gelu * hidden_linear
|
324 |
+
hidden_states = self.dropout(hidden_states)
|
325 |
+
|
326 |
+
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
|
327 |
+
# See https://github.com/huggingface/transformers/issues/20287
|
328 |
+
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
|
329 |
+
if hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8:
|
330 |
+
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
331 |
+
|
332 |
+
hidden_states = self.wo(hidden_states)
|
333 |
+
return hidden_states
|
334 |
+
|
335 |
+
|
336 |
+
class T5LayerFF(T5FFLayerAdaptersMixin, nn.Module):
|
337 |
+
def __init__(self, config: T5Config):
|
338 |
+
super().__init__()
|
339 |
+
self.config = config
|
340 |
+
if config.is_gated_act:
|
341 |
+
self.DenseReluDense = T5DenseGatedActDense(config)
|
342 |
+
else:
|
343 |
+
self.DenseReluDense = T5DenseActDense(config)
|
344 |
+
|
345 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
346 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
347 |
+
self._init_adapter_modules()
|
348 |
+
|
349 |
+
def forward(self, hidden_states):
|
350 |
+
forwarded_states = self.layer_norm(hidden_states)
|
351 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
352 |
+
hidden_states = self.adapter_layer_forward(
|
353 |
+
hidden_states=self.dropout(forwarded_states), residual_input=hidden_states, layer_norm=None
|
354 |
+
)
|
355 |
+
return hidden_states
|
356 |
+
|
357 |
+
|
358 |
+
class T5Attention(nn.Module):
|
359 |
+
def __init__(self, config: T5Config, has_relative_attention_bias=False, location_key: Optional[str] = None):
|
360 |
+
super().__init__()
|
361 |
+
self.is_decoder = config.is_decoder
|
362 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
363 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
364 |
+
self.relative_attention_max_distance = config.relative_attention_max_distance
|
365 |
+
self.d_model = config.d_model
|
366 |
+
self.key_value_proj_dim = config.d_kv
|
367 |
+
self.n_heads = config.num_heads
|
368 |
+
self.dropout = config.dropout_rate
|
369 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
370 |
+
|
371 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
372 |
+
self.q = LoRALinear(self.d_model, self.inner_dim, "selfattn", config, attn_key="q", bias=False)
|
373 |
+
self.k = LoRALinear(self.d_model, self.inner_dim, "selfattn", config, attn_key="k", bias=False)
|
374 |
+
self.v = LoRALinear(self.d_model, self.inner_dim, "selfattn", config, attn_key="v", bias=False)
|
375 |
+
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
376 |
+
|
377 |
+
if self.has_relative_attention_bias:
|
378 |
+
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
|
379 |
+
self.pruned_heads = set()
|
380 |
+
self.gradient_checkpointing = False
|
381 |
+
|
382 |
+
self.prefix_tuning = PrefixTuningShim(location_key + "_prefix" if location_key else None, config)
|
383 |
+
|
384 |
+
def prune_heads(self, heads):
|
385 |
+
if len(heads) == 0:
|
386 |
+
return
|
387 |
+
heads, index = find_pruneable_heads_and_indices(
|
388 |
+
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
|
389 |
+
)
|
390 |
+
# Prune linear layers
|
391 |
+
self.q = prune_linear_layer(self.q, index)
|
392 |
+
self.k = prune_linear_layer(self.k, index)
|
393 |
+
self.v = prune_linear_layer(self.v, index)
|
394 |
+
self.o = prune_linear_layer(self.o, index, dim=1)
|
395 |
+
# Update hyper params
|
396 |
+
self.n_heads = self.n_heads - len(heads)
|
397 |
+
self.inner_dim = self.key_value_proj_dim * self.n_heads
|
398 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
399 |
+
|
400 |
+
@staticmethod
|
401 |
+
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
402 |
+
"""
|
403 |
+
Adapted from Mesh Tensorflow:
|
404 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
405 |
+
|
406 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
407 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
408 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
409 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
410 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
411 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
412 |
+
|
413 |
+
Args:
|
414 |
+
relative_position: an int32 Tensor
|
415 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
416 |
+
num_buckets: an integer
|
417 |
+
max_distance: an integer
|
418 |
+
|
419 |
+
Returns:
|
420 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
421 |
+
"""
|
422 |
+
relative_buckets = 0
|
423 |
+
if bidirectional:
|
424 |
+
num_buckets //= 2
|
425 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
426 |
+
relative_position = torch.abs(relative_position)
|
427 |
+
else:
|
428 |
+
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
429 |
+
# now relative_position is in the range [0, inf)
|
430 |
+
|
431 |
+
# half of the buckets are for exact increments in positions
|
432 |
+
max_exact = num_buckets // 2
|
433 |
+
is_small = relative_position < max_exact
|
434 |
+
|
435 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
436 |
+
relative_position_if_large = max_exact + (
|
437 |
+
torch.log(relative_position.float() / max_exact)
|
438 |
+
/ math.log(max_distance / max_exact)
|
439 |
+
* (num_buckets - max_exact)
|
440 |
+
).to(torch.long)
|
441 |
+
relative_position_if_large = torch.min(
|
442 |
+
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
|
443 |
+
)
|
444 |
+
|
445 |
+
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
446 |
+
return relative_buckets
|
447 |
+
|
448 |
+
def compute_bias(self, query_length, key_length, device=None):
|
449 |
+
"""Compute binned relative position bias"""
|
450 |
+
if device is None:
|
451 |
+
device = self.relative_attention_bias.weight.device
|
452 |
+
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
453 |
+
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
454 |
+
relative_position = memory_position - context_position # shape (query_length, key_length)
|
455 |
+
relative_position_bucket = self._relative_position_bucket(
|
456 |
+
relative_position, # shape (query_length, key_length)
|
457 |
+
bidirectional=(not self.is_decoder),
|
458 |
+
num_buckets=self.relative_attention_num_buckets,
|
459 |
+
max_distance=self.relative_attention_max_distance,
|
460 |
+
)
|
461 |
+
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
462 |
+
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
463 |
+
return values
|
464 |
+
|
465 |
+
def forward(
|
466 |
+
self,
|
467 |
+
hidden_states,
|
468 |
+
mask=None,
|
469 |
+
key_value_states=None,
|
470 |
+
position_bias=None,
|
471 |
+
past_key_value=None,
|
472 |
+
layer_head_mask=None,
|
473 |
+
query_length=None,
|
474 |
+
use_cache=False,
|
475 |
+
output_attentions=False,
|
476 |
+
):
|
477 |
+
"""
|
478 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
479 |
+
"""
|
480 |
+
# Input is (batch_size, seq_length, dim)
|
481 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
482 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
483 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
484 |
+
|
485 |
+
real_seq_length = seq_length
|
486 |
+
|
487 |
+
if past_key_value is not None:
|
488 |
+
assert (
|
489 |
+
len(past_key_value) == 2
|
490 |
+
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
491 |
+
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
|
492 |
+
|
493 |
+
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
|
494 |
+
|
495 |
+
def shape(states):
|
496 |
+
"""projection"""
|
497 |
+
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
498 |
+
|
499 |
+
def unshape(states):
|
500 |
+
"""reshape"""
|
501 |
+
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
502 |
+
|
503 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
504 |
+
"""projects hidden states correctly to key/query states"""
|
505 |
+
if key_value_states is None:
|
506 |
+
# self-attn
|
507 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
508 |
+
hidden_states = shape(proj_layer(hidden_states))
|
509 |
+
elif past_key_value is None:
|
510 |
+
# cross-attn
|
511 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
512 |
+
hidden_states = shape(proj_layer(key_value_states))
|
513 |
+
|
514 |
+
if past_key_value is not None:
|
515 |
+
if key_value_states is None:
|
516 |
+
# self-attn
|
517 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
518 |
+
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
519 |
+
elif past_key_value.shape[2] != key_value_states.shape[1]:
|
520 |
+
# checking that the `sequence_length` of the `past_key_value` is the same as
|
521 |
+
# the provided `key_value_states` to support prefix tuning
|
522 |
+
# cross-attn
|
523 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
524 |
+
hidden_states = shape(proj_layer(key_value_states))
|
525 |
+
else:
|
526 |
+
# cross-attn
|
527 |
+
hidden_states = past_key_value
|
528 |
+
return hidden_states
|
529 |
+
|
530 |
+
# get query states
|
531 |
+
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
|
532 |
+
|
533 |
+
# get key/value states
|
534 |
+
key_states = project(
|
535 |
+
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
|
536 |
+
)
|
537 |
+
value_states = project(
|
538 |
+
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
|
539 |
+
)
|
540 |
+
|
541 |
+
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
|
542 |
+
|
543 |
+
key_states, value_states, mask = self.prefix_tuning(key_states, value_states, hidden_states, mask)
|
544 |
+
(query_states,) = adjust_tensors_for_parallel(key_states, query_states)
|
545 |
+
batch_size, key_length = key_states.shape[0], key_states.shape[2]
|
546 |
+
|
547 |
+
# compute scores
|
548 |
+
scores = torch.matmul(
|
549 |
+
query_states, key_states.transpose(3, 2)
|
550 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
551 |
+
|
552 |
+
if position_bias is None:
|
553 |
+
if not self.has_relative_attention_bias:
|
554 |
+
position_bias = torch.zeros(
|
555 |
+
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
556 |
+
)
|
557 |
+
if self.gradient_checkpointing and self.training:
|
558 |
+
position_bias.requires_grad = True
|
559 |
+
else:
|
560 |
+
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
|
561 |
+
|
562 |
+
# if key and values are already calculated
|
563 |
+
# we want only the last query position bias
|
564 |
+
if past_key_value is not None:
|
565 |
+
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
|
566 |
+
|
567 |
+
if mask is not None:
|
568 |
+
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
|
569 |
+
|
570 |
+
if self.pruned_heads:
|
571 |
+
mask = torch.ones(position_bias.shape[1])
|
572 |
+
mask[list(self.pruned_heads)] = 0
|
573 |
+
position_bias_masked = position_bias[:, mask.bool()]
|
574 |
+
else:
|
575 |
+
position_bias_masked = position_bias
|
576 |
+
|
577 |
+
scores += position_bias_masked
|
578 |
+
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
579 |
+
scores
|
580 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
581 |
+
attn_weights = nn.functional.dropout(
|
582 |
+
attn_weights, p=self.dropout, training=self.training
|
583 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
584 |
+
|
585 |
+
# Mask heads if we want to
|
586 |
+
if layer_head_mask is not None:
|
587 |
+
attn_weights = attn_weights * layer_head_mask
|
588 |
+
|
589 |
+
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
|
590 |
+
attn_output = self.o(attn_output)
|
591 |
+
|
592 |
+
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
593 |
+
|
594 |
+
if output_attentions:
|
595 |
+
outputs = outputs + (attn_weights,)
|
596 |
+
return outputs
|
597 |
+
|
598 |
+
|
599 |
+
class T5LayerSelfAttention(T5SelfAttentionLayerAdaptersMixin, nn.Module):
|
600 |
+
def __init__(self, config, has_relative_attention_bias=False, location_key: Optional[str] = None):
|
601 |
+
super().__init__()
|
602 |
+
self.config = config
|
603 |
+
self.SelfAttention = T5Attention(
|
604 |
+
config, has_relative_attention_bias=has_relative_attention_bias, location_key=location_key
|
605 |
+
)
|
606 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
607 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
608 |
+
self._init_adapter_modules()
|
609 |
+
|
610 |
+
def forward(
|
611 |
+
self,
|
612 |
+
hidden_states,
|
613 |
+
attention_mask=None,
|
614 |
+
position_bias=None,
|
615 |
+
layer_head_mask=None,
|
616 |
+
past_key_value=None,
|
617 |
+
use_cache=False,
|
618 |
+
output_attentions=False,
|
619 |
+
):
|
620 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
621 |
+
attention_output = self.SelfAttention(
|
622 |
+
normed_hidden_states,
|
623 |
+
mask=attention_mask,
|
624 |
+
position_bias=position_bias,
|
625 |
+
layer_head_mask=layer_head_mask,
|
626 |
+
past_key_value=past_key_value,
|
627 |
+
use_cache=use_cache,
|
628 |
+
output_attentions=output_attentions,
|
629 |
+
)
|
630 |
+
hidden_states = self.adapter_layer_forward(
|
631 |
+
hidden_states=self.dropout(attention_output[0]), residual_input=hidden_states, layer_norm=None
|
632 |
+
)
|
633 |
+
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
|
634 |
+
return outputs
|
635 |
+
|
636 |
+
|
637 |
+
class T5LayerCrossAttention(T5CrossAttentionLayerAdaptersMixin, nn.Module):
|
638 |
+
def __init__(self, config):
|
639 |
+
super().__init__()
|
640 |
+
self.config = config
|
641 |
+
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False, location_key="cross")
|
642 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
643 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
644 |
+
self._init_adapter_modules()
|
645 |
+
|
646 |
+
def forward(
|
647 |
+
self,
|
648 |
+
hidden_states,
|
649 |
+
key_value_states,
|
650 |
+
attention_mask=None,
|
651 |
+
position_bias=None,
|
652 |
+
layer_head_mask=None,
|
653 |
+
past_key_value=None,
|
654 |
+
use_cache=False,
|
655 |
+
query_length=None,
|
656 |
+
output_attentions=False,
|
657 |
+
):
|
658 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
659 |
+
attention_output = self.EncDecAttention(
|
660 |
+
normed_hidden_states,
|
661 |
+
mask=attention_mask,
|
662 |
+
key_value_states=key_value_states,
|
663 |
+
position_bias=position_bias,
|
664 |
+
layer_head_mask=layer_head_mask,
|
665 |
+
past_key_value=past_key_value,
|
666 |
+
use_cache=use_cache,
|
667 |
+
query_length=query_length,
|
668 |
+
output_attentions=output_attentions,
|
669 |
+
)
|
670 |
+
layer_output = self.adapter_layer_forward(
|
671 |
+
hidden_states=self.dropout(attention_output[0]), residual_input=hidden_states, layer_norm=None
|
672 |
+
)
|
673 |
+
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
|
674 |
+
return outputs
|
675 |
+
|
676 |
+
|
677 |
+
class T5Block(nn.Module):
|
678 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
679 |
+
super().__init__()
|
680 |
+
self.is_decoder = config.is_decoder
|
681 |
+
self.layer = nn.ModuleList()
|
682 |
+
location_key = "self" if self.is_decoder else "encoder"
|
683 |
+
self.layer.append(
|
684 |
+
T5LayerSelfAttention(
|
685 |
+
config, has_relative_attention_bias=has_relative_attention_bias, location_key=location_key
|
686 |
+
)
|
687 |
+
)
|
688 |
+
if self.is_decoder:
|
689 |
+
self.layer.append(T5LayerCrossAttention(config))
|
690 |
+
|
691 |
+
self.layer.append(T5LayerFF(config))
|
692 |
+
|
693 |
+
def forward(
|
694 |
+
self,
|
695 |
+
hidden_states,
|
696 |
+
attention_mask=None,
|
697 |
+
position_bias=None,
|
698 |
+
encoder_hidden_states=None,
|
699 |
+
encoder_attention_mask=None,
|
700 |
+
encoder_decoder_position_bias=None,
|
701 |
+
layer_head_mask=None,
|
702 |
+
cross_attn_layer_head_mask=None,
|
703 |
+
past_key_value=None,
|
704 |
+
use_cache=False,
|
705 |
+
output_attentions=False,
|
706 |
+
return_dict=True,
|
707 |
+
):
|
708 |
+
|
709 |
+
if past_key_value is not None:
|
710 |
+
if not self.is_decoder:
|
711 |
+
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
|
712 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
713 |
+
|
714 |
+
if len(past_key_value) != expected_num_past_key_values:
|
715 |
+
raise ValueError(
|
716 |
+
f"There should be {expected_num_past_key_values} past states. "
|
717 |
+
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
718 |
+
f"Got {len(past_key_value)} past key / value states"
|
719 |
+
)
|
720 |
+
|
721 |
+
self_attn_past_key_value = past_key_value[:2]
|
722 |
+
cross_attn_past_key_value = past_key_value[2:]
|
723 |
+
else:
|
724 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
725 |
+
|
726 |
+
self_attention_outputs = self.layer[0](
|
727 |
+
hidden_states,
|
728 |
+
attention_mask=attention_mask,
|
729 |
+
position_bias=position_bias,
|
730 |
+
layer_head_mask=layer_head_mask,
|
731 |
+
past_key_value=self_attn_past_key_value,
|
732 |
+
use_cache=use_cache,
|
733 |
+
output_attentions=output_attentions,
|
734 |
+
)
|
735 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
736 |
+
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
|
737 |
+
|
738 |
+
# clamp inf values to enable fp16 training
|
739 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
740 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
741 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
742 |
+
|
743 |
+
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
744 |
+
if do_cross_attention:
|
745 |
+
# the actual query length is unknown for cross attention
|
746 |
+
# if using past key value states. Need to inject it here
|
747 |
+
if present_key_value_state is not None:
|
748 |
+
query_length = present_key_value_state[0].shape[2]
|
749 |
+
else:
|
750 |
+
query_length = None
|
751 |
+
|
752 |
+
cross_attention_outputs = self.layer[1](
|
753 |
+
hidden_states,
|
754 |
+
key_value_states=encoder_hidden_states,
|
755 |
+
attention_mask=encoder_attention_mask,
|
756 |
+
position_bias=encoder_decoder_position_bias,
|
757 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
758 |
+
past_key_value=cross_attn_past_key_value,
|
759 |
+
query_length=query_length,
|
760 |
+
use_cache=use_cache,
|
761 |
+
output_attentions=output_attentions,
|
762 |
+
)
|
763 |
+
hidden_states = cross_attention_outputs[0]
|
764 |
+
|
765 |
+
# clamp inf values to enable fp16 training
|
766 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
767 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
768 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
769 |
+
|
770 |
+
# Combine self attn and cross attn key value states
|
771 |
+
if present_key_value_state is not None:
|
772 |
+
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
|
773 |
+
|
774 |
+
# Keep cross-attention outputs and relative position weights
|
775 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
776 |
+
|
777 |
+
# Apply Feed Forward layer
|
778 |
+
hidden_states = self.layer[-1](hidden_states)
|
779 |
+
|
780 |
+
# clamp inf values to enable fp16 training
|
781 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
782 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
783 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
784 |
+
|
785 |
+
outputs = (hidden_states,)
|
786 |
+
|
787 |
+
if use_cache:
|
788 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
789 |
+
else:
|
790 |
+
outputs = outputs + attention_outputs
|
791 |
+
|
792 |
+
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
793 |
+
|
794 |
+
|
795 |
+
class T5PreTrainedModel(PreTrainedModel):
|
796 |
+
"""
|
797 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
798 |
+
models.
|
799 |
+
"""
|
800 |
+
|
801 |
+
config_class = T5Config
|
802 |
+
load_tf_weights = load_tf_weights_in_t5
|
803 |
+
base_model_prefix = "transformer"
|
804 |
+
is_parallelizable = True
|
805 |
+
supports_gradient_checkpointing = True
|
806 |
+
_no_split_modules = ["T5Block"]
|
807 |
+
_keep_in_fp32_modules = ["wo"]
|
808 |
+
|
809 |
+
@property
|
810 |
+
def dummy_inputs(self):
|
811 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
812 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
813 |
+
dummy_inputs = {
|
814 |
+
"decoder_input_ids": input_ids,
|
815 |
+
"input_ids": input_ids,
|
816 |
+
"decoder_attention_mask": input_mask,
|
817 |
+
}
|
818 |
+
return dummy_inputs
|
819 |
+
|
820 |
+
def _init_weights(self, module):
|
821 |
+
"""Initialize the weights"""
|
822 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
823 |
+
if isinstance(module, T5LayerNorm):
|
824 |
+
module.weight.data.fill_(factor * 1.0)
|
825 |
+
elif isinstance(module, (T5Model, T5ForConditionalGeneration, T5EncoderModel)):
|
826 |
+
# Mesh TensorFlow embeddings initialization
|
827 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
828 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
829 |
+
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
830 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
831 |
+
elif isinstance(module, T5DenseActDense):
|
832 |
+
# Mesh TensorFlow FF initialization
|
833 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
834 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
835 |
+
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
836 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
837 |
+
module.wi.bias.data.zero_()
|
838 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
839 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
840 |
+
module.wo.bias.data.zero_()
|
841 |
+
elif isinstance(module, T5DenseGatedActDense):
|
842 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
843 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
844 |
+
module.wi_0.bias.data.zero_()
|
845 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
846 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
847 |
+
module.wi_1.bias.data.zero_()
|
848 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
849 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
850 |
+
module.wo.bias.data.zero_()
|
851 |
+
elif isinstance(module, T5Attention):
|
852 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
853 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
854 |
+
d_model = self.config.d_model
|
855 |
+
key_value_proj_dim = self.config.d_kv
|
856 |
+
n_heads = self.config.num_heads
|
857 |
+
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
858 |
+
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
859 |
+
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
860 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
861 |
+
if module.has_relative_attention_bias:
|
862 |
+
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
863 |
+
|
864 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
865 |
+
if isinstance(module, (T5Attention, T5Stack)):
|
866 |
+
module.gradient_checkpointing = value
|
867 |
+
|
868 |
+
def _shift_right(self, input_ids):
|
869 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
870 |
+
pad_token_id = self.config.pad_token_id
|
871 |
+
|
872 |
+
assert decoder_start_token_id is not None, (
|
873 |
+
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
|
874 |
+
" See T5 docs for more information"
|
875 |
+
)
|
876 |
+
|
877 |
+
# shift inputs to the right
|
878 |
+
if is_torch_fx_proxy(input_ids):
|
879 |
+
# Item assignment is not supported natively for proxies.
|
880 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
881 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
882 |
+
else:
|
883 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
884 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
885 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
886 |
+
|
887 |
+
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
|
888 |
+
# replace possible -100 values in labels by `pad_token_id`
|
889 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
890 |
+
|
891 |
+
return shifted_input_ids
|
892 |
+
|
893 |
+
|
894 |
+
class T5Stack(InvertibleAdaptersMixin, T5PreTrainedModel):
|
895 |
+
def __init__(self, config, embed_tokens=None):
|
896 |
+
super().__init__(config)
|
897 |
+
|
898 |
+
self.embed_tokens = embed_tokens
|
899 |
+
self.is_decoder = config.is_decoder
|
900 |
+
|
901 |
+
self.block = nn.ModuleList(
|
902 |
+
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
903 |
+
)
|
904 |
+
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
905 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
906 |
+
|
907 |
+
# Initialize weights and apply final processing
|
908 |
+
self.post_init()
|
909 |
+
# Model parallel
|
910 |
+
self.model_parallel = False
|
911 |
+
self.device_map = None
|
912 |
+
self.gradient_checkpointing = False
|
913 |
+
|
914 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
915 |
+
def parallelize(self, device_map=None):
|
916 |
+
# Check validity of device_map
|
917 |
+
self.device_map = (
|
918 |
+
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
|
919 |
+
)
|
920 |
+
assert_device_map(self.device_map, len(self.block))
|
921 |
+
self.model_parallel = True
|
922 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
923 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
924 |
+
# Load onto devices
|
925 |
+
for k, v in self.device_map.items():
|
926 |
+
for layer in v:
|
927 |
+
cuda_device = "cuda:" + str(k)
|
928 |
+
self.block[layer] = self.block[layer].to(cuda_device)
|
929 |
+
|
930 |
+
# Set embed_tokens to first layer
|
931 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
932 |
+
# Set final layer norm to last device
|
933 |
+
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
|
934 |
+
|
935 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
936 |
+
def deparallelize(self):
|
937 |
+
self.model_parallel = False
|
938 |
+
self.device_map = None
|
939 |
+
self.first_device = "cpu"
|
940 |
+
self.last_device = "cpu"
|
941 |
+
for i in range(len(self.block)):
|
942 |
+
self.block[i] = self.block[i].to("cpu")
|
943 |
+
self.embed_tokens = self.embed_tokens.to("cpu")
|
944 |
+
self.final_layer_norm = self.final_layer_norm.to("cpu")
|
945 |
+
torch.cuda.empty_cache()
|
946 |
+
|
947 |
+
def get_input_embeddings(self):
|
948 |
+
return self.embed_tokens
|
949 |
+
|
950 |
+
def set_input_embeddings(self, new_embeddings):
|
951 |
+
self.embed_tokens = new_embeddings
|
952 |
+
|
953 |
+
def forward(
|
954 |
+
self,
|
955 |
+
input_ids=None,
|
956 |
+
attention_mask=None,
|
957 |
+
encoder_hidden_states=None,
|
958 |
+
encoder_attention_mask=None,
|
959 |
+
inputs_embeds=None,
|
960 |
+
head_mask=None,
|
961 |
+
cross_attn_head_mask=None,
|
962 |
+
past_key_values=None,
|
963 |
+
use_cache=None,
|
964 |
+
output_attentions=None,
|
965 |
+
output_hidden_states=None,
|
966 |
+
return_dict=None,
|
967 |
+
):
|
968 |
+
# Model parallel
|
969 |
+
if self.model_parallel:
|
970 |
+
torch.cuda.set_device(self.first_device)
|
971 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
972 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
973 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
974 |
+
output_hidden_states = (
|
975 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
976 |
+
)
|
977 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
978 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
979 |
+
input_ids, encoder_attention_mask = adjust_tensors_for_parallel(
|
980 |
+
encoder_hidden_states, input_ids, encoder_attention_mask
|
981 |
+
)
|
982 |
+
|
983 |
+
if input_ids is not None and inputs_embeds is not None:
|
984 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
985 |
+
raise ValueError(
|
986 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
987 |
+
)
|
988 |
+
elif input_ids is not None:
|
989 |
+
input_shape = input_ids.size()
|
990 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
991 |
+
elif inputs_embeds is not None:
|
992 |
+
input_shape = inputs_embeds.size()[:-1]
|
993 |
+
else:
|
994 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
995 |
+
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
996 |
+
|
997 |
+
if inputs_embeds is None:
|
998 |
+
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
|
999 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1000 |
+
|
1001 |
+
batch_size, seq_length = input_shape
|
1002 |
+
|
1003 |
+
# required mask seq length can be calculated via length of past
|
1004 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
1005 |
+
|
1006 |
+
if use_cache is True:
|
1007 |
+
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
1008 |
+
|
1009 |
+
if attention_mask is None:
|
1010 |
+
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
1011 |
+
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
1012 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
1013 |
+
encoder_attention_mask = torch.ones(
|
1014 |
+
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
# initialize past_key_values with `None` if past does not exist
|
1018 |
+
if past_key_values is None:
|
1019 |
+
past_key_values = [None] * len(self.block)
|
1020 |
+
|
1021 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1022 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1023 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
1024 |
+
|
1025 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1026 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1027 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1028 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1029 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1030 |
+
if encoder_attention_mask is None:
|
1031 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
|
1032 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1033 |
+
else:
|
1034 |
+
encoder_extended_attention_mask = None
|
1035 |
+
|
1036 |
+
# Prepare head mask if needed
|
1037 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
1038 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
1039 |
+
present_key_value_states = () if use_cache else None
|
1040 |
+
all_hidden_states = () if output_hidden_states else None
|
1041 |
+
all_attentions = () if output_attentions else None
|
1042 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
1043 |
+
position_bias = None
|
1044 |
+
encoder_decoder_position_bias = None
|
1045 |
+
|
1046 |
+
hidden_states = self.dropout(inputs_embeds)
|
1047 |
+
if not self.is_decoder:
|
1048 |
+
hidden_states = self.invertible_adapters_forward(hidden_states)
|
1049 |
+
|
1050 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
1051 |
+
layer_head_mask = head_mask[i]
|
1052 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
1053 |
+
# Model parallel
|
1054 |
+
if self.model_parallel:
|
1055 |
+
torch.cuda.set_device(hidden_states.device)
|
1056 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
1057 |
+
if attention_mask is not None:
|
1058 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
1059 |
+
if position_bias is not None:
|
1060 |
+
position_bias = position_bias.to(hidden_states.device)
|
1061 |
+
if encoder_hidden_states is not None:
|
1062 |
+
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
|
1063 |
+
if encoder_extended_attention_mask is not None:
|
1064 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
|
1065 |
+
if encoder_decoder_position_bias is not None:
|
1066 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
|
1067 |
+
if layer_head_mask is not None:
|
1068 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
1069 |
+
if cross_attn_layer_head_mask is not None:
|
1070 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
|
1071 |
+
if output_hidden_states:
|
1072 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1073 |
+
|
1074 |
+
if self.gradient_checkpointing and self.training:
|
1075 |
+
if use_cache:
|
1076 |
+
logger.warning(
|
1077 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1078 |
+
)
|
1079 |
+
use_cache = False
|
1080 |
+
|
1081 |
+
def create_custom_forward(module):
|
1082 |
+
def custom_forward(*inputs):
|
1083 |
+
return tuple(module(*inputs, use_cache, output_attentions))
|
1084 |
+
|
1085 |
+
return custom_forward
|
1086 |
+
|
1087 |
+
layer_outputs = checkpoint(
|
1088 |
+
create_custom_forward(layer_module),
|
1089 |
+
hidden_states,
|
1090 |
+
extended_attention_mask,
|
1091 |
+
position_bias,
|
1092 |
+
encoder_hidden_states,
|
1093 |
+
encoder_extended_attention_mask,
|
1094 |
+
encoder_decoder_position_bias,
|
1095 |
+
layer_head_mask,
|
1096 |
+
cross_attn_layer_head_mask,
|
1097 |
+
None, # past_key_value is always None with gradient checkpointing
|
1098 |
+
)
|
1099 |
+
else:
|
1100 |
+
layer_outputs = layer_module(
|
1101 |
+
hidden_states,
|
1102 |
+
attention_mask=extended_attention_mask,
|
1103 |
+
position_bias=position_bias,
|
1104 |
+
encoder_hidden_states=encoder_hidden_states,
|
1105 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1106 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
1107 |
+
layer_head_mask=layer_head_mask,
|
1108 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
1109 |
+
past_key_value=past_key_value,
|
1110 |
+
use_cache=use_cache,
|
1111 |
+
output_attentions=output_attentions,
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
# layer_outputs is a tuple with:
|
1115 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
1116 |
+
if use_cache is False:
|
1117 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
1118 |
+
|
1119 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
1120 |
+
|
1121 |
+
attention_mask, extended_attention_mask = adjust_tensors_for_parallel(
|
1122 |
+
hidden_states, attention_mask, extended_attention_mask
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
# We share the position biases between the layers - the first layer store them
|
1126 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
1127 |
+
# (cross-attention position bias), (cross-attention weights)
|
1128 |
+
position_bias = layer_outputs[2]
|
1129 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1130 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
1131 |
+
# append next layer key value states
|
1132 |
+
if use_cache:
|
1133 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
1134 |
+
|
1135 |
+
if position_bias is not None:
|
1136 |
+
position_bias = adjust_tensors_for_parallel(hidden_states, position_bias)[0]
|
1137 |
+
if encoder_decoder_position_bias is not None:
|
1138 |
+
encoder_decoder_position_bias = adjust_tensors_for_parallel(
|
1139 |
+
hidden_states, encoder_decoder_position_bias
|
1140 |
+
)[0]
|
1141 |
+
|
1142 |
+
if output_attentions:
|
1143 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
1144 |
+
if self.is_decoder:
|
1145 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
1146 |
+
|
1147 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
1148 |
+
if self.model_parallel:
|
1149 |
+
for k, v in self.device_map.items():
|
1150 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
1151 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
1152 |
+
|
1153 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1154 |
+
hidden_states = self.dropout(hidden_states)
|
1155 |
+
|
1156 |
+
# Add last layer
|
1157 |
+
if output_hidden_states:
|
1158 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1159 |
+
|
1160 |
+
if not return_dict:
|
1161 |
+
return tuple(
|
1162 |
+
v
|
1163 |
+
for v in [
|
1164 |
+
hidden_states,
|
1165 |
+
present_key_value_states,
|
1166 |
+
all_hidden_states,
|
1167 |
+
all_attentions,
|
1168 |
+
all_cross_attentions,
|
1169 |
+
]
|
1170 |
+
if v is not None
|
1171 |
+
)
|
1172 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1173 |
+
last_hidden_state=hidden_states,
|
1174 |
+
past_key_values=present_key_value_states,
|
1175 |
+
hidden_states=all_hidden_states,
|
1176 |
+
attentions=all_attentions,
|
1177 |
+
cross_attentions=all_cross_attentions,
|
1178 |
+
)
|
1179 |
+
|
1180 |
+
|
1181 |
+
T5_START_DOCSTRING = r"""
|
1182 |
+
|
1183 |
+
The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
|
1184 |
+
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
|
1185 |
+
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
|
1186 |
+
text-to-text denoising generative setting.
|
1187 |
+
|
1188 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1189 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1190 |
+
etc.)
|
1191 |
+
|
1192 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1193 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1194 |
+
and behavior.
|
1195 |
+
|
1196 |
+
Parameters:
|
1197 |
+
config ([`T5Config`]): Model configuration class with all the parameters of the model.
|
1198 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1199 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1200 |
+
"""
|
1201 |
+
|
1202 |
+
T5_INPUTS_DOCSTRING = r"""
|
1203 |
+
Args:
|
1204 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1205 |
+
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
1206 |
+
should be able to pad the inputs on both the right and the left.
|
1207 |
+
|
1208 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1209 |
+
[`PreTrainedTokenizer.__call__`] for detail.
|
1210 |
+
|
1211 |
+
[What are input IDs?](../glossary#input-ids)
|
1212 |
+
|
1213 |
+
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
|
1214 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1215 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1216 |
+
|
1217 |
+
- 1 for tokens that are **not masked**,
|
1218 |
+
- 0 for tokens that are **masked**.
|
1219 |
+
|
1220 |
+
[What are attention masks?](../glossary#attention-mask)
|
1221 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1222 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
1223 |
+
|
1224 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1225 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1226 |
+
|
1227 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
1228 |
+
|
1229 |
+
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
|
1230 |
+
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
|
1231 |
+
|
1232 |
+
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
|
1233 |
+
Training](./t5#training).
|
1234 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1235 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
1236 |
+
be used by default.
|
1237 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1238 |
+
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
|
1239 |
+
1]`:
|
1240 |
+
|
1241 |
+
- 1 indicates the head is **not masked**,
|
1242 |
+
- 0 indicates the head is **masked**.
|
1243 |
+
|
1244 |
+
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1245 |
+
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
|
1246 |
+
1]`:
|
1247 |
+
|
1248 |
+
- 1 indicates the head is **not masked**,
|
1249 |
+
- 0 indicates the head is **masked**.
|
1250 |
+
|
1251 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1252 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
|
1253 |
+
`[0, 1]`:
|
1254 |
+
|
1255 |
+
- 1 indicates the head is **not masked**,
|
1256 |
+
- 0 indicates the head is **masked**.
|
1257 |
+
|
1258 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
1259 |
+
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
|
1260 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
|
1261 |
+
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
1262 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1263 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1264 |
+
|
1265 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1266 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1267 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1268 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1269 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1270 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1271 |
+
model's internal embedding lookup matrix.
|
1272 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
1273 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
1274 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
1275 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
1276 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
1277 |
+
|
1278 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
1279 |
+
of `inputs_embeds`.
|
1280 |
+
|
1281 |
+
use_cache (`bool`, *optional*):
|
1282 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1283 |
+
`past_key_values`).
|
1284 |
+
|
1285 |
+
output_attentions (`bool`, *optional*):
|
1286 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1287 |
+
tensors for more detail.
|
1288 |
+
output_hidden_states (`bool`, *optional*):
|
1289 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1290 |
+
more detail.
|
1291 |
+
return_dict (`bool`, *optional*):
|
1292 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1293 |
+
"""
|
1294 |
+
|
1295 |
+
T5_ENCODER_INPUTS_DOCSTRING = r"""
|
1296 |
+
Args:
|
1297 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1298 |
+
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
1299 |
+
should be able to pad the inputs on both the right and the left.
|
1300 |
+
|
1301 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1302 |
+
[`PreTrainedTokenizer.__call__`] for detail.
|
1303 |
+
|
1304 |
+
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
|
1305 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1306 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1307 |
+
|
1308 |
+
- 1 for tokens that are **not masked**,
|
1309 |
+
- 0 for tokens that are **masked**.
|
1310 |
+
|
1311 |
+
[What are attention masks?](../glossary#attention-mask)
|
1312 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1313 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
1314 |
+
|
1315 |
+
- 1 indicates the head is **not masked**,
|
1316 |
+
- 0 indicates the head is **masked**.
|
1317 |
+
|
1318 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1319 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1320 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1321 |
+
model's internal embedding lookup matrix.
|
1322 |
+
output_attentions (`bool`, *optional*):
|
1323 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1324 |
+
tensors for more detail.
|
1325 |
+
output_hidden_states (`bool`, *optional*):
|
1326 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1327 |
+
more detail.
|
1328 |
+
return_dict (`bool`, *optional*):
|
1329 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1330 |
+
"""
|
1331 |
+
|
1332 |
+
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1333 |
+
__HEAD_MASK_WARNING_MSG = """
|
1334 |
+
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
|
1335 |
+
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
|
1336 |
+
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
|
1337 |
+
num_heads)`.
|
1338 |
+
"""
|
1339 |
+
|
1340 |
+
|
1341 |
+
@add_start_docstrings(
|
1342 |
+
"The bare T5 Model transformer outputting raw hidden-states without any specific head on top.",
|
1343 |
+
T5_START_DOCSTRING,
|
1344 |
+
)
|
1345 |
+
class T5Model(T5ModelAdaptersMixin, T5PreTrainedModel):
|
1346 |
+
_keys_to_ignore_on_load_missing = [
|
1347 |
+
r"encoder.embed_tokens.weight",
|
1348 |
+
r"decoder.embed_tokens.weight",
|
1349 |
+
]
|
1350 |
+
_keys_to_ignore_on_load_unexpected = [
|
1351 |
+
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
1352 |
+
]
|
1353 |
+
|
1354 |
+
def __init__(self, config: T5Config):
|
1355 |
+
super().__init__(config)
|
1356 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1357 |
+
|
1358 |
+
encoder_config = copy.deepcopy(config)
|
1359 |
+
encoder_config.is_decoder = False
|
1360 |
+
encoder_config.use_cache = False
|
1361 |
+
encoder_config.is_encoder_decoder = False
|
1362 |
+
encoder_config.adapters = config.adapters
|
1363 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1364 |
+
|
1365 |
+
decoder_config = copy.deepcopy(config)
|
1366 |
+
decoder_config.is_decoder = True
|
1367 |
+
decoder_config.is_encoder_decoder = False
|
1368 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1369 |
+
decoder_config.adapters = config.adapters
|
1370 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
1371 |
+
|
1372 |
+
self._init_adapter_modules()
|
1373 |
+
|
1374 |
+
# Initialize weights and apply final processing
|
1375 |
+
self.post_init()
|
1376 |
+
|
1377 |
+
# Model parallel
|
1378 |
+
self.model_parallel = False
|
1379 |
+
self.device_map = None
|
1380 |
+
|
1381 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1382 |
+
def parallelize(self, device_map=None):
|
1383 |
+
self.device_map = (
|
1384 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1385 |
+
if device_map is None
|
1386 |
+
else device_map
|
1387 |
+
)
|
1388 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1389 |
+
self.encoder.parallelize(self.device_map)
|
1390 |
+
self.decoder.parallelize(self.device_map)
|
1391 |
+
self.model_parallel = True
|
1392 |
+
|
1393 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1394 |
+
def deparallelize(self):
|
1395 |
+
self.encoder.deparallelize()
|
1396 |
+
self.decoder.deparallelize()
|
1397 |
+
self.encoder = self.encoder.to("cpu")
|
1398 |
+
self.decoder = self.decoder.to("cpu")
|
1399 |
+
self.model_parallel = False
|
1400 |
+
self.device_map = None
|
1401 |
+
torch.cuda.empty_cache()
|
1402 |
+
|
1403 |
+
def get_input_embeddings(self):
|
1404 |
+
return self.shared
|
1405 |
+
|
1406 |
+
def set_input_embeddings(self, new_embeddings):
|
1407 |
+
self.shared = new_embeddings
|
1408 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1409 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1410 |
+
|
1411 |
+
def get_encoder(self):
|
1412 |
+
return self.encoder
|
1413 |
+
|
1414 |
+
def get_decoder(self):
|
1415 |
+
return self.decoder
|
1416 |
+
|
1417 |
+
def _prune_heads(self, heads_to_prune):
|
1418 |
+
"""
|
1419 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1420 |
+
class PreTrainedModel
|
1421 |
+
"""
|
1422 |
+
for layer, heads in heads_to_prune.items():
|
1423 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1424 |
+
|
1425 |
+
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
1426 |
+
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
1427 |
+
@ForwardContext.wrap
|
1428 |
+
def forward(
|
1429 |
+
self,
|
1430 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1431 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1432 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1433 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1434 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1435 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
1436 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1437 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1438 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1439 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1440 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
1441 |
+
use_cache: Optional[bool] = None,
|
1442 |
+
output_attentions: Optional[bool] = None,
|
1443 |
+
output_hidden_states: Optional[bool] = None,
|
1444 |
+
return_dict: Optional[bool] = None,
|
1445 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
1446 |
+
r"""
|
1447 |
+
Returns:
|
1448 |
+
|
1449 |
+
Example:
|
1450 |
+
|
1451 |
+
```python
|
1452 |
+
>>> from transformers import AutoTokenizer, T5Model
|
1453 |
+
|
1454 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
1455 |
+
>>> model = T5Model.from_pretrained("t5-small")
|
1456 |
+
|
1457 |
+
>>> input_ids = tokenizer(
|
1458 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1459 |
+
... ).input_ids # Batch size 1
|
1460 |
+
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
1461 |
+
|
1462 |
+
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model.
|
1463 |
+
>>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg.
|
1464 |
+
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
|
1465 |
+
|
1466 |
+
>>> # forward pass
|
1467 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
1468 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1469 |
+
```"""
|
1470 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1471 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1472 |
+
|
1473 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1474 |
+
if head_mask is not None and decoder_head_mask is None:
|
1475 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1476 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
1477 |
+
decoder_head_mask = head_mask
|
1478 |
+
|
1479 |
+
# Encode if needed (training, first prediction pass)
|
1480 |
+
if encoder_outputs is None:
|
1481 |
+
encoder_outputs = self.encoder(
|
1482 |
+
input_ids=input_ids,
|
1483 |
+
attention_mask=attention_mask,
|
1484 |
+
inputs_embeds=inputs_embeds,
|
1485 |
+
head_mask=head_mask,
|
1486 |
+
output_attentions=output_attentions,
|
1487 |
+
output_hidden_states=output_hidden_states,
|
1488 |
+
return_dict=return_dict,
|
1489 |
+
)
|
1490 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1491 |
+
encoder_outputs = BaseModelOutput(
|
1492 |
+
last_hidden_state=encoder_outputs[0],
|
1493 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1494 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1495 |
+
)
|
1496 |
+
|
1497 |
+
hidden_states = encoder_outputs[0]
|
1498 |
+
|
1499 |
+
# Set device for model parallelism
|
1500 |
+
if self.model_parallel:
|
1501 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1502 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1503 |
+
if decoder_input_ids is not None:
|
1504 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1505 |
+
if attention_mask is not None:
|
1506 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1507 |
+
if decoder_attention_mask is not None:
|
1508 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
1509 |
+
|
1510 |
+
# Decode
|
1511 |
+
decoder_outputs = self.decoder(
|
1512 |
+
input_ids=decoder_input_ids,
|
1513 |
+
attention_mask=decoder_attention_mask,
|
1514 |
+
inputs_embeds=decoder_inputs_embeds,
|
1515 |
+
past_key_values=past_key_values,
|
1516 |
+
encoder_hidden_states=hidden_states,
|
1517 |
+
encoder_attention_mask=attention_mask,
|
1518 |
+
head_mask=decoder_head_mask,
|
1519 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1520 |
+
use_cache=use_cache,
|
1521 |
+
output_attentions=output_attentions,
|
1522 |
+
output_hidden_states=output_hidden_states,
|
1523 |
+
return_dict=return_dict,
|
1524 |
+
)
|
1525 |
+
|
1526 |
+
if not return_dict:
|
1527 |
+
return decoder_outputs + encoder_outputs
|
1528 |
+
|
1529 |
+
return Seq2SeqModelOutput(
|
1530 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1531 |
+
past_key_values=decoder_outputs.past_key_values,
|
1532 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1533 |
+
decoder_attentions=decoder_outputs.attentions,
|
1534 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1535 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1536 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1537 |
+
encoder_attentions=encoder_outputs.attentions,
|
1538 |
+
)
|
1539 |
+
|
1540 |
+
|
1541 |
+
@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING)
|
1542 |
+
class T5ForConditionalGeneration(T5ModelWithHeadsAdaptersMixin, T5ModelAdaptersMixin, T5PreTrainedModel):
|
1543 |
+
_keys_to_ignore_on_load_missing = [
|
1544 |
+
r"encoder.embed_tokens.weight",
|
1545 |
+
r"decoder.embed_tokens.weight",
|
1546 |
+
r"lm_head.weight",
|
1547 |
+
]
|
1548 |
+
_keys_to_ignore_on_load_unexpected = [
|
1549 |
+
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
1550 |
+
]
|
1551 |
+
|
1552 |
+
def __init__(self, config: T5Config):
|
1553 |
+
super().__init__(config)
|
1554 |
+
self.model_dim = config.d_model
|
1555 |
+
|
1556 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1557 |
+
|
1558 |
+
encoder_config = copy.deepcopy(config)
|
1559 |
+
encoder_config.is_decoder = False
|
1560 |
+
encoder_config.use_cache = False
|
1561 |
+
encoder_config.is_encoder_decoder = False
|
1562 |
+
encoder_config.adapters = config.adapters
|
1563 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1564 |
+
|
1565 |
+
decoder_config = copy.deepcopy(config)
|
1566 |
+
decoder_config.is_decoder = True
|
1567 |
+
decoder_config.is_encoder_decoder = False
|
1568 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1569 |
+
decoder_config.adapters = config.adapters
|
1570 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
1571 |
+
|
1572 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
1573 |
+
|
1574 |
+
self._init_adapter_modules()
|
1575 |
+
|
1576 |
+
# Initialize weights and apply final processing
|
1577 |
+
self.post_init()
|
1578 |
+
|
1579 |
+
# Model parallel
|
1580 |
+
self.model_parallel = False
|
1581 |
+
self.device_map = None
|
1582 |
+
|
1583 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1584 |
+
def parallelize(self, device_map=None):
|
1585 |
+
self.device_map = (
|
1586 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1587 |
+
if device_map is None
|
1588 |
+
else device_map
|
1589 |
+
)
|
1590 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1591 |
+
self.encoder.parallelize(self.device_map)
|
1592 |
+
self.decoder.parallelize(self.device_map)
|
1593 |
+
self.lm_head = self.lm_head.to(self.decoder.first_device)
|
1594 |
+
self.model_parallel = True
|
1595 |
+
|
1596 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1597 |
+
def deparallelize(self):
|
1598 |
+
self.encoder.deparallelize()
|
1599 |
+
self.decoder.deparallelize()
|
1600 |
+
self.encoder = self.encoder.to("cpu")
|
1601 |
+
self.decoder = self.decoder.to("cpu")
|
1602 |
+
self.lm_head = self.lm_head.to("cpu")
|
1603 |
+
self.model_parallel = False
|
1604 |
+
self.device_map = None
|
1605 |
+
torch.cuda.empty_cache()
|
1606 |
+
|
1607 |
+
def get_input_embeddings(self):
|
1608 |
+
return self.shared
|
1609 |
+
|
1610 |
+
def set_input_embeddings(self, new_embeddings):
|
1611 |
+
self.shared = new_embeddings
|
1612 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1613 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1614 |
+
|
1615 |
+
def set_output_embeddings(self, new_embeddings):
|
1616 |
+
self.lm_head = new_embeddings
|
1617 |
+
|
1618 |
+
def get_output_embeddings(self):
|
1619 |
+
return self.lm_head
|
1620 |
+
|
1621 |
+
def get_encoder(self):
|
1622 |
+
return self.encoder
|
1623 |
+
|
1624 |
+
def get_decoder(self):
|
1625 |
+
return self.decoder
|
1626 |
+
|
1627 |
+
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
1628 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1629 |
+
@ForwardContext.wrap
|
1630 |
+
def forward(
|
1631 |
+
self,
|
1632 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1633 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1634 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1635 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1636 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1637 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
1638 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1639 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1640 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1641 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1642 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1643 |
+
labels: Optional[torch.LongTensor] = None,
|
1644 |
+
use_cache: Optional[bool] = None,
|
1645 |
+
output_attentions: Optional[bool] = None,
|
1646 |
+
output_hidden_states: Optional[bool] = None,
|
1647 |
+
return_dict: Optional[bool] = None,
|
1648 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
1649 |
+
r"""
|
1650 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1651 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
1652 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
1653 |
+
labels in `[0, ..., config.vocab_size]`
|
1654 |
+
|
1655 |
+
Returns:
|
1656 |
+
|
1657 |
+
Examples:
|
1658 |
+
|
1659 |
+
```python
|
1660 |
+
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration
|
1661 |
+
|
1662 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
1663 |
+
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
1664 |
+
|
1665 |
+
>>> # training
|
1666 |
+
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
|
1667 |
+
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
|
1668 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
1669 |
+
>>> loss = outputs.loss
|
1670 |
+
>>> logits = outputs.logits
|
1671 |
+
|
1672 |
+
>>> # inference
|
1673 |
+
>>> input_ids = tokenizer(
|
1674 |
+
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
|
1675 |
+
... ).input_ids # Batch size 1
|
1676 |
+
>>> outputs = model.generate(input_ids)
|
1677 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
1678 |
+
>>> # studies have shown that owning a dog is good for you.
|
1679 |
+
```"""
|
1680 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1681 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1682 |
+
|
1683 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1684 |
+
if head_mask is not None and decoder_head_mask is None:
|
1685 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1686 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
1687 |
+
decoder_head_mask = head_mask
|
1688 |
+
|
1689 |
+
# Encode if needed (training, first prediction pass)
|
1690 |
+
if encoder_outputs is None:
|
1691 |
+
# Convert encoder inputs in embeddings if needed
|
1692 |
+
encoder_outputs = self.encoder(
|
1693 |
+
input_ids=input_ids,
|
1694 |
+
attention_mask=attention_mask,
|
1695 |
+
inputs_embeds=inputs_embeds,
|
1696 |
+
head_mask=head_mask,
|
1697 |
+
output_attentions=output_attentions,
|
1698 |
+
output_hidden_states=output_hidden_states,
|
1699 |
+
return_dict=return_dict,
|
1700 |
+
)
|
1701 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1702 |
+
encoder_outputs = BaseModelOutput(
|
1703 |
+
last_hidden_state=encoder_outputs[0],
|
1704 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1705 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1706 |
+
)
|
1707 |
+
|
1708 |
+
hidden_states = encoder_outputs[0]
|
1709 |
+
|
1710 |
+
if self.model_parallel:
|
1711 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1712 |
+
|
1713 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
1714 |
+
# get decoder inputs from shifting lm labels to the right
|
1715 |
+
decoder_input_ids = self._shift_right(labels)
|
1716 |
+
|
1717 |
+
# Set device for model parallelism
|
1718 |
+
if self.model_parallel:
|
1719 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1720 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1721 |
+
if decoder_input_ids is not None:
|
1722 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1723 |
+
if attention_mask is not None:
|
1724 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1725 |
+
if decoder_attention_mask is not None:
|
1726 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
1727 |
+
|
1728 |
+
# Decode
|
1729 |
+
decoder_outputs = self.decoder(
|
1730 |
+
input_ids=decoder_input_ids,
|
1731 |
+
attention_mask=decoder_attention_mask,
|
1732 |
+
inputs_embeds=decoder_inputs_embeds,
|
1733 |
+
past_key_values=past_key_values,
|
1734 |
+
encoder_hidden_states=hidden_states,
|
1735 |
+
encoder_attention_mask=attention_mask,
|
1736 |
+
head_mask=decoder_head_mask,
|
1737 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1738 |
+
use_cache=use_cache,
|
1739 |
+
output_attentions=output_attentions,
|
1740 |
+
output_hidden_states=output_hidden_states,
|
1741 |
+
return_dict=return_dict,
|
1742 |
+
)
|
1743 |
+
|
1744 |
+
sequence_output = decoder_outputs[0]
|
1745 |
+
|
1746 |
+
# Set device for model parallelism
|
1747 |
+
if self.model_parallel:
|
1748 |
+
torch.cuda.set_device(self.encoder.first_device)
|
1749 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
1750 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
1751 |
+
|
1752 |
+
if self.config.tie_word_embeddings:
|
1753 |
+
# Rescale output before projecting on vocab
|
1754 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
1755 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
1756 |
+
|
1757 |
+
projected_output = self.encoder.invertible_adapters_forward(sequence_output, rev=True)
|
1758 |
+
|
1759 |
+
self.invertible_adapters_forward(projected_output, rev=True)
|
1760 |
+
|
1761 |
+
lm_logits = self.lm_head(projected_output)
|
1762 |
+
|
1763 |
+
loss = None
|
1764 |
+
if labels is not None:
|
1765 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1766 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
1767 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
1768 |
+
|
1769 |
+
if not return_dict:
|
1770 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
1771 |
+
return ((loss,) + output) if loss is not None else output
|
1772 |
+
|
1773 |
+
return Seq2SeqLMOutput(
|
1774 |
+
loss=loss,
|
1775 |
+
logits=lm_logits,
|
1776 |
+
past_key_values=decoder_outputs.past_key_values,
|
1777 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1778 |
+
decoder_attentions=decoder_outputs.attentions,
|
1779 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1780 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1781 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1782 |
+
encoder_attentions=encoder_outputs.attentions,
|
1783 |
+
)
|
1784 |
+
|
1785 |
+
def prepare_inputs_for_generation(
|
1786 |
+
self,
|
1787 |
+
input_ids,
|
1788 |
+
past_key_values=None,
|
1789 |
+
attention_mask=None,
|
1790 |
+
head_mask=None,
|
1791 |
+
decoder_head_mask=None,
|
1792 |
+
cross_attn_head_mask=None,
|
1793 |
+
use_cache=None,
|
1794 |
+
encoder_outputs=None,
|
1795 |
+
**kwargs
|
1796 |
+
):
|
1797 |
+
|
1798 |
+
# cut decoder_input_ids if past is used
|
1799 |
+
if past_key_values is not None:
|
1800 |
+
input_ids = input_ids[:, -1:]
|
1801 |
+
|
1802 |
+
return {
|
1803 |
+
"decoder_input_ids": input_ids,
|
1804 |
+
"past_key_values": past_key_values,
|
1805 |
+
"encoder_outputs": encoder_outputs,
|
1806 |
+
"attention_mask": attention_mask,
|
1807 |
+
"head_mask": head_mask,
|
1808 |
+
"decoder_head_mask": decoder_head_mask,
|
1809 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1810 |
+
"use_cache": use_cache,
|
1811 |
+
}
|
1812 |
+
|
1813 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1814 |
+
return self._shift_right(labels)
|
1815 |
+
|
1816 |
+
def _reorder_cache(self, past, beam_idx):
|
1817 |
+
# if decoder past is not included in output
|
1818 |
+
# speedy decoding is disabled and no need to reorder
|
1819 |
+
if past is None:
|
1820 |
+
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
|
1821 |
+
return past
|
1822 |
+
|
1823 |
+
reordered_decoder_past = ()
|
1824 |
+
for layer_past_states in past:
|
1825 |
+
# get the correct batch idx from layer past batch dim
|
1826 |
+
# batch dim of `past` is at 2nd position
|
1827 |
+
reordered_layer_past_states = ()
|
1828 |
+
for layer_past_state in layer_past_states:
|
1829 |
+
# need to set correct `past` for each of the four key / value states
|
1830 |
+
reordered_layer_past_states = reordered_layer_past_states + (
|
1831 |
+
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
|
1832 |
+
)
|
1833 |
+
|
1834 |
+
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
|
1835 |
+
assert len(reordered_layer_past_states) == len(layer_past_states)
|
1836 |
+
|
1837 |
+
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
1838 |
+
return reordered_decoder_past
|
1839 |
+
|
1840 |
+
def preprocess(self,text):
|
1841 |
+
text = text.replace("\n", "\\n").replace("\t", "\\t")
|
1842 |
+
return text
|
1843 |
+
|
1844 |
+
def postprocess(self,text):
|
1845 |
+
return text.replace("\\n", "\n").replace("\\t", "\t").replace('%20',' ')
|
1846 |
+
|
1847 |
+
|
1848 |
+
def get_response(self,tokenizer,text, sample=True, top_p=0.9, temperature=0.7,max_length=1024,no_repeat_ngram_size=12,num_beams=1, length_penalty=0.6,):
|
1849 |
+
base_info = "用户:你是谁?\n小元:我是元语智能公司研发的AI智能助手, 在不违反原则的情况下,我可以回答你的任何问题。\n"
|
1850 |
+
text=base_info+text
|
1851 |
+
text = self.preprocess(text)
|
1852 |
+
|
1853 |
+
|
1854 |
+
encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=max_length, return_tensors="pt").to(self.device)
|
1855 |
+
if not sample:
|
1856 |
+
out = self.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=max_length, num_beams=num_beams, length_penalty=length_penalty,do_sample=False)
|
1857 |
+
else:
|
1858 |
+
out = self.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=max_length, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=no_repeat_ngram_size)
|
1859 |
+
out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True)
|
1860 |
+
return self.postprocess(out_text[0])
|
1861 |
+
|
1862 |
+
|
1863 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, sample=True, top_p=0.9, temperature=0.7,max_length=1024):
|
1864 |
+
|
1865 |
+
|
1866 |
+
history = history or []
|
1867 |
+
if len(history) > 5:
|
1868 |
+
history = history[-5:]
|
1869 |
+
|
1870 |
+
context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
|
1871 |
+
#print(context)
|
1872 |
+
|
1873 |
+
input_text = context + "\n用户:" + query + "\n小元:"
|
1874 |
+
input_text = input_text.strip()
|
1875 |
+
response = self.get_response(tokenizer,input_text,sample, top_p, temperature,max_length)
|
1876 |
+
|
1877 |
+
history.append((query, response))
|
1878 |
+
return response,history
|
1879 |
+
|
1880 |
+
@add_start_docstrings(
|
1881 |
+
"The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
|
1882 |
+
T5_START_DOCSTRING,
|
1883 |
+
)
|
1884 |
+
class T5EncoderModel(T5ModelAdaptersMixin, T5PreTrainedModel):
|
1885 |
+
authorized_missing_keys = [
|
1886 |
+
r"encoder.embed_tokens.weight",
|
1887 |
+
]
|
1888 |
+
_keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"]
|
1889 |
+
|
1890 |
+
def __init__(self, config: T5Config):
|
1891 |
+
super().__init__(config)
|
1892 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1893 |
+
|
1894 |
+
encoder_config = copy.deepcopy(config)
|
1895 |
+
encoder_config.use_cache = False
|
1896 |
+
encoder_config.is_encoder_decoder = False
|
1897 |
+
encoder_config.adapters = config.adapters
|
1898 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1899 |
+
|
1900 |
+
# Initialize weights and apply final processing
|
1901 |
+
self.post_init()
|
1902 |
+
|
1903 |
+
# Model parallel
|
1904 |
+
self.model_parallel = False
|
1905 |
+
self.device_map = None
|
1906 |
+
|
1907 |
+
self._init_adapter_modules()
|
1908 |
+
|
1909 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1910 |
+
def parallelize(self, device_map=None):
|
1911 |
+
self.device_map = (
|
1912 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1913 |
+
if device_map is None
|
1914 |
+
else device_map
|
1915 |
+
)
|
1916 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1917 |
+
self.encoder.parallelize(self.device_map)
|
1918 |
+
self.model_parallel = True
|
1919 |
+
|
1920 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1921 |
+
def deparallelize(self):
|
1922 |
+
self.encoder.deparallelize()
|
1923 |
+
self.encoder = self.encoder.to("cpu")
|
1924 |
+
self.model_parallel = False
|
1925 |
+
self.device_map = None
|
1926 |
+
torch.cuda.empty_cache()
|
1927 |
+
|
1928 |
+
def get_input_embeddings(self):
|
1929 |
+
return self.shared
|
1930 |
+
|
1931 |
+
def set_input_embeddings(self, new_embeddings):
|
1932 |
+
self.shared = new_embeddings
|
1933 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1934 |
+
|
1935 |
+
def get_encoder(self):
|
1936 |
+
return self.encoder
|
1937 |
+
|
1938 |
+
def _prune_heads(self, heads_to_prune):
|
1939 |
+
"""
|
1940 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1941 |
+
class PreTrainedModel
|
1942 |
+
"""
|
1943 |
+
for layer, heads in heads_to_prune.items():
|
1944 |
+
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
|
1945 |
+
|
1946 |
+
@add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING)
|
1947 |
+
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
1948 |
+
@ForwardContext.wrap
|
1949 |
+
def forward(
|
1950 |
+
self,
|
1951 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1952 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1953 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1954 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1955 |
+
output_attentions: Optional[bool] = None,
|
1956 |
+
output_hidden_states: Optional[bool] = None,
|
1957 |
+
return_dict: Optional[bool] = None,
|
1958 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
1959 |
+
r"""
|
1960 |
+
Returns:
|
1961 |
+
|
1962 |
+
Example:
|
1963 |
+
|
1964 |
+
```python
|
1965 |
+
>>> from transformers import AutoTokenizer, T5EncoderModel
|
1966 |
+
|
1967 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
1968 |
+
>>> model = T5EncoderModel.from_pretrained("t5-small")
|
1969 |
+
>>> input_ids = tokenizer(
|
1970 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1971 |
+
... ).input_ids # Batch size 1
|
1972 |
+
>>> outputs = model(input_ids=input_ids)
|
1973 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1974 |
+
```"""
|
1975 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1976 |
+
|
1977 |
+
encoder_outputs = self.encoder(
|
1978 |
+
input_ids=input_ids,
|
1979 |
+
attention_mask=attention_mask,
|
1980 |
+
inputs_embeds=inputs_embeds,
|
1981 |
+
head_mask=head_mask,
|
1982 |
+
output_attentions=output_attentions,
|
1983 |
+
output_hidden_states=output_hidden_states,
|
1984 |
+
return_dict=return_dict,
|
1985 |
+
)
|
1986 |
+
|
1987 |
+
return encoder_outputs
|