Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,199 +1,306 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
|
66 |
-
|
|
|
|
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
<!--
|
|
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
|
|
91 |
|
|
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
|
|
98 |
|
99 |
-
<!--
|
|
|
100 |
|
101 |
-
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
|
|
122 |
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
|
|
126 |
|
127 |
-
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:392702
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: answerdotai/ModernBERT-base
|
10 |
+
widget:
|
11 |
+
- source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ... 약 371km / s에서 별자리 leo 쪽으로. "
|
12 |
+
sentences:
|
13 |
+
- 두 마리의 독수리가 가지에 앉는다.
|
14 |
+
- 다른 물체와는 관련이 없는 '정지'는 없다.
|
15 |
+
- 소녀는 버스의 열린 문 앞에 서 있다.
|
16 |
+
- source_sentence: 숲에는 개들이 있다.
|
17 |
+
sentences:
|
18 |
+
- 양을 보는 아이들.
|
19 |
+
- 여왕의 배우자를 "왕"이라고 부르지 않는 것은 아주 좋은 이유가 있다. 왜냐하면 그들은 왕이 아니기 때문이다.
|
20 |
+
- 개들은 숲속에 혼자 있다.
|
21 |
+
- source_sentence: '첫째, 두 가지 다른 종류의 대시가 있다는 것을 알아야 합니다 : en 대시와 em 대시.'
|
22 |
+
sentences:
|
23 |
+
- 그들은 그 물건들을 집 주변에 두고 가거나 집의 정리를 해칠 의도가 없다.
|
24 |
+
- 세미콜론은 혼자 있을 수 있는 문장에 참여하는데 사용되지만, 그들의 관계를 강조하기 위해 결합됩니다.
|
25 |
+
- 그의 남동생이 지켜보는 동안 집 앞에서 트럼펫을 연주하는 금발의 아이.
|
26 |
+
- source_sentence: 한 여성이 생선 껍질을 벗기고 있다.
|
27 |
+
sentences:
|
28 |
+
- 한 남자가 수영장으로 뛰어들었다.
|
29 |
+
- 한 여성이 프라이팬에 노란 혼합물을 부어 넣고 있다.
|
30 |
+
- 두 마리의 갈색 개가 눈 속에서 서로 놀고 있다.
|
31 |
+
- source_sentence: 버스가 바쁜 길을 따라 운전한다.
|
32 |
+
sentences:
|
33 |
+
- 우리와 같은 태양계가 은하계 밖에서 존재할 수도 있을 것입니다.
|
34 |
+
- 그 여자는 데이트하러 가는 중이다.
|
35 |
+
- 녹색 버스가 도로를 따라 내려간다.
|
36 |
+
pipeline_tag: sentence-similarity
|
37 |
+
library_name: sentence-transformers
|
38 |
+
metrics:
|
39 |
+
- pearson_cosine
|
40 |
+
- spearman_cosine
|
41 |
+
- pearson_euclidean
|
42 |
+
- spearman_euclidean
|
43 |
+
- pearson_manhattan
|
44 |
+
- spearman_manhattan
|
45 |
+
- pearson_dot
|
46 |
+
- spearman_dot
|
47 |
+
- pearson_max
|
48 |
+
- spearman_max
|
49 |
+
model-index:
|
50 |
+
- name: SentenceTransformer based on answerdotai/ModernBERT-base
|
51 |
+
results:
|
52 |
+
- task:
|
53 |
+
type: semantic-similarity
|
54 |
+
name: Semantic Similarity
|
55 |
+
dataset:
|
56 |
+
name: sts dev
|
57 |
+
type: sts_dev
|
58 |
+
metrics:
|
59 |
+
- type: pearson_cosine
|
60 |
+
value: 0.8273878707711191
|
61 |
+
name: Pearson Cosine
|
62 |
+
- type: spearman_cosine
|
63 |
+
value: 0.8298080691919564
|
64 |
+
name: Spearman Cosine
|
65 |
+
- type: pearson_euclidean
|
66 |
+
value: 0.8112987734110177
|
67 |
+
name: Pearson Euclidean
|
68 |
+
- type: spearman_euclidean
|
69 |
+
value: 0.8214596205940881
|
70 |
+
name: Spearman Euclidean
|
71 |
+
- type: pearson_manhattan
|
72 |
+
value: 0.8125188338482303
|
73 |
+
name: Pearson Manhattan
|
74 |
+
- type: spearman_manhattan
|
75 |
+
value: 0.8226861322419045
|
76 |
+
name: Spearman Manhattan
|
77 |
+
- type: pearson_dot
|
78 |
+
value: 0.7646820898603437
|
79 |
+
name: Pearson Dot
|
80 |
+
- type: spearman_dot
|
81 |
+
value: 0.7648333772102188
|
82 |
+
name: Spearman Dot
|
83 |
+
- type: pearson_max
|
84 |
+
value: 0.8273878707711191
|
85 |
+
name: Pearson Max
|
86 |
+
- type: spearman_max
|
87 |
+
value: 0.8298080691919564
|
88 |
+
name: Spearman Max
|
89 |
---
|
90 |
|
91 |
+
# SentenceTransformer based on answerdotai/ModernBERT-base
|
|
|
|
|
|
|
92 |
|
93 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
94 |
|
95 |
## Model Details
|
96 |
|
97 |
### Model Description
|
98 |
+
- **Model Type:** Sentence Transformer
|
99 |
+
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision addb15798678d7f76904915cf8045628d402b3ce -->
|
100 |
+
- **Maximum Sequence Length:** 512 tokens
|
101 |
+
- **Output Dimensionality:** 768 dimensions
|
102 |
+
- **Similarity Function:** Cosine Similarity
|
103 |
+
<!-- - **Language:** Unknown -->
|
104 |
+
<!-- - **License:** Unknown -->
|
105 |
|
106 |
+
### Model Sources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
109 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
110 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
111 |
|
112 |
+
### Full Model Architecture
|
113 |
|
114 |
+
```
|
115 |
+
SentenceTransformer(
|
116 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
117 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': True, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
118 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
119 |
+
)
|
120 |
+
```
|
121 |
|
122 |
+
## Usage
|
123 |
|
124 |
+
### Direct Usage (Sentence Transformers)
|
125 |
|
126 |
+
First install the Sentence Transformers library:
|
127 |
|
128 |
+
```bash
|
129 |
+
pip install -U sentence-transformers
|
130 |
+
```
|
131 |
|
132 |
+
Then you can load this model and run inference.
|
133 |
+
```python
|
134 |
+
from sentence_transformers import SentenceTransformer
|
135 |
|
136 |
+
# Download from the 🤗 Hub
|
137 |
+
model = SentenceTransformer("x2bee/sts_nli_tune_test")
|
138 |
+
# Run inference
|
139 |
+
sentences = [
|
140 |
+
'버스가 바쁜 길을 따라 운전한다.',
|
141 |
+
'녹색 버스가 도로를 따라 내려간다.',
|
142 |
+
'그 여자는 데이트하러 가는 중이다.',
|
143 |
+
]
|
144 |
+
embeddings = model.encode(sentences)
|
145 |
+
print(embeddings.shape)
|
146 |
+
# [3, 768]
|
147 |
|
148 |
+
# Get the similarity scores for the embeddings
|
149 |
+
similarities = model.similarity(embeddings, embeddings)
|
150 |
+
print(similarities.shape)
|
151 |
+
# [3, 3]
|
152 |
+
```
|
153 |
|
154 |
+
<!--
|
155 |
+
### Direct Usage (Transformers)
|
156 |
|
157 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
158 |
|
159 |
+
</details>
|
160 |
+
-->
|
161 |
|
162 |
+
<!--
|
163 |
+
### Downstream Usage (Sentence Transformers)
|
164 |
|
165 |
+
You can finetune this model on your own dataset.
|
166 |
|
167 |
+
<details><summary>Click to expand</summary>
|
168 |
|
169 |
+
</details>
|
170 |
+
-->
|
171 |
|
172 |
+
<!--
|
173 |
+
### Out-of-Scope Use
|
174 |
|
175 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
176 |
+
-->
|
177 |
|
178 |
## Evaluation
|
179 |
|
180 |
+
### Metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
#### Semantic Similarity
|
183 |
|
184 |
+
* Dataset: `sts_dev`
|
185 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
186 |
|
187 |
+
| Metric | Value |
|
188 |
+
|:-------------------|:-----------|
|
189 |
+
| pearson_cosine | 0.8273 |
|
190 |
+
| spearman_cosine | 0.8298 |
|
191 |
+
| pearson_euclidean | 0.8112 |
|
192 |
+
| spearman_euclidean | 0.8214 |
|
193 |
+
| pearson_manhattan | 0.8125 |
|
194 |
+
| spearman_manhattan | 0.8226 |
|
195 |
+
| pearson_dot | 0.7648 |
|
196 |
+
| spearman_dot | 0.7648 |
|
197 |
+
| pearson_max | 0.8273 |
|
198 |
+
| **spearman_max** | **0.8298** |
|
199 |
|
200 |
+
<!--
|
201 |
+
## Bias, Risks and Limitations
|
202 |
|
203 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
204 |
+
-->
|
205 |
|
206 |
+
<!--
|
207 |
+
### Recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
210 |
+
-->
|
211 |
|
212 |
+
## Training Details
|
213 |
|
214 |
+
### Training Dataset
|
215 |
+
|
216 |
+
#### korean_nli_dataset
|
217 |
+
|
218 |
+
* Dataset: [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) at [ef305ef](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset/tree/ef305ef8e2d83c6991f30f2322f321efb5a3b9d1)
|
219 |
+
* Size: 392,702 training samples
|
220 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
221 |
+
* Approximate statistics based on the first 1000 samples:
|
222 |
+
| | sentence1 | sentence2 | score |
|
223 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
224 |
+
| type | string | string | float |
|
225 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 35.7 tokens</li><li>max: 194 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.92 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
|
226 |
+
* Samples:
|
227 |
+
| sentence1 | sentence2 | score |
|
228 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------|:-----------------|
|
229 |
+
| <code>개념적으로 크림 스키밍은 제품과 지리라는 두 가지 기본 차원을 가지고 있다.</code> | <code>제품과 지리학은 크림 스키밍을 작동시키는 것이다.</code> | <code>0.5</code> |
|
230 |
+
| <code>시즌 중에 알고 있는 거 알아? 네 레벨에서 다음 레벨로 잃어버리는 거야 브레이브스가 모팀을 떠올리기로 결정하면 브레이브스가 트리플 A에서 한 남자를 떠올리기로 결정하면 더블 A가 그를 대신하러 올라가고 A 한 명이 그를 대신하러 올라간다.</code> | <code>사람들이 기억하면 다음 수준으로 물건을 잃는다.</code> | <code>1.0</code> |
|
231 |
+
| <code>우리 번호 중 하나가 당신의 지시를 세밀하게 수행할 것이다.</code> | <code>우리 팀의 일원이 당신의 명령을 엄청나게 정확하게 실행할 것이다.</code> | <code>1.0</code> |
|
232 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
233 |
+
```json
|
234 |
+
{
|
235 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
236 |
+
}
|
237 |
+
```
|
238 |
+
|
239 |
+
### Evaluation Dataset
|
240 |
+
|
241 |
+
#### sts_dev
|
242 |
+
|
243 |
+
* Dataset: [sts_dev](https://huggingface.co/datasets/CocoRoF/sts_dev) at [1de0cdf](https://huggingface.co/datasets/CocoRoF/sts_dev/tree/1de0cdfb2c238786ee61c5765aa60eed4a782371)
|
244 |
+
* Size: 1,500 evaluation samples
|
245 |
+
* Columns: <code>text</code>, <code>pair</code>, and <code>label</code>
|
246 |
+
* Approximate statistics based on the first 1000 samples:
|
247 |
+
| | text | pair | label |
|
248 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
249 |
+
| type | string | string | float |
|
250 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 20.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.52 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
251 |
+
* Samples:
|
252 |
+
| text | pair | label |
|
253 |
+
|:-------------------------------------|:------------------------------------|:------------------|
|
254 |
+
| <code>안전모를 가진 한 남자가 춤을 추고 있다.</code> | <code>안전모를 쓴 한 남자가 춤을 추고 있다.</code> | <code>1.0</code> |
|
255 |
+
| <code>어린아이가 말을 타고 있다.</code> | <code>아이가 말을 타고 있다.</code> | <code>0.95</code> |
|
256 |
+
| <code>한 남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>1.0</code> |
|
257 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
258 |
+
```json
|
259 |
+
{
|
260 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
261 |
+
}
|
262 |
+
```
|
263 |
+
|
264 |
+
### Framework Versions
|
265 |
+
- Python: 3.11.10
|
266 |
+
- Sentence Transformers: 3.3.1
|
267 |
+
- Transformers: 4.48.0
|
268 |
+
- PyTorch: 2.5.1+cu124
|
269 |
+
- Accelerate: 1.2.1
|
270 |
+
- Datasets: 3.2.0
|
271 |
+
- Tokenizers: 0.21.0
|
272 |
+
|
273 |
+
## Citation
|
274 |
+
|
275 |
+
### BibTeX
|
276 |
+
|
277 |
+
#### Sentence Transformers
|
278 |
+
```bibtex
|
279 |
+
@inproceedings{reimers-2019-sentence-bert,
|
280 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
281 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
282 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
283 |
+
month = "11",
|
284 |
+
year = "2019",
|
285 |
+
publisher = "Association for Computational Linguistics",
|
286 |
+
url = "https://arxiv.org/abs/1908.10084",
|
287 |
+
}
|
288 |
+
```
|
289 |
+
|
290 |
+
<!--
|
291 |
+
## Glossary
|
292 |
+
|
293 |
+
*Clearly define terms in order to be accessible across audiences.*
|
294 |
+
-->
|
295 |
+
|
296 |
+
<!--
|
297 |
+
## Model Card Authors
|
298 |
+
|
299 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
300 |
+
-->
|
301 |
+
|
302 |
+
<!--
|
303 |
## Model Card Contact
|
304 |
|
305 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
306 |
+
-->
|