File size: 4,598 Bytes
2157f81 d7444f2 2157f81 83cc074 2157f81 13dda63 966d762 49ecd86 2157f81 dd58664 2157f81 a2defce 2157f81 83cc074 2157f81 83cc074 d7444f2 2157f81 d7444f2 2157f81 13dda63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- axolotl
- generated_from_trainer
model-index:
- name: deepseek-coder-1.3b-typescript
results: []
datasets:
- bigcode/the-stack-dedup
widget:
- text: "class Person {\n constructor(public name:"
example_title: "class"
- text: "function quickSort"
example_title: "function"
---
<img src="codegpt-deepseek-typescript.png" alt="CodeGPT" width="800" />
<p align="center">
<img width="1000px" alt="CodeGPT: DeepSeek Coder - Typescript" src="codegpt-deepseek-typescript.png?raw=true">
</p>
<p align="center"><a href="https://codegpt.co/">[CodeGPT.co]</a> | <a href="https://ollama.ai/codegpt/deepseek-coder-1.3b-typescript">[🦙 Ollama]</a> | <a href="https://discord.gg/fKyyJX5pne">[Discord]</a> | <a href="https://marketplace.visualstudio.com/items?itemName=DanielSanMedium.dscodegpt">[VSCode Extension]</a> </p>
<hr>
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: deepseek-ai/deepseek-coder-1.3b-base
model_type: AutoModelForCausalLM
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: CodeGPTPlus/typescript-0-500000-seq1024
type: completion
field: text
val_set_size: 0.001
output_dir: ./fft-out
sequence_len: 1024
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
lora_modules_to_save:
wandb_project: deepseek_1.3_fft
wandb_entity:
wandb_watch:
wandb_name: aws_a10g
wandb_log_model: end
gradient_accumulation_steps: 2
micro_batch_size: 20
num_epochs: 1
optimizer: adamw_bnb_8bit
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 0.000001
max_grad_norm: 1.0
weight_decay: 0.1
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
hub_model_id: CodeGPTPlus/deepseek_coder_1.3b_typescript
hub_strategy: every_save
warmup_ratio: 0.01
evals_per_epoch: 20
saves_per_epoch: 3
debug:
deepspeed:
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|begin▁of▁sentence|>"
eos_token: "<|end▁of▁sentence|>"
pad_token: "<|end▁of▁sentence|>"
```
</details><br>
# deepseek-coder-1.3b-typescript
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on the the-stack dataset, using 0.5B of tokens of typescript only.
It achieves the following results on the evaluation set:
- Loss: 0.7681
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 261
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.0745 | 0.0 | 1 | 0.8681 |
| 1.2267 | 0.05 | 1308 | 0.8130 |
| 1.1594 | 0.1 | 2616 | 0.8018 |
| 0.7674 | 0.15 | 3924 | 0.7942 |
| 0.6443 | 0.2 | 5232 | 0.7889 |
| 0.9155 | 0.25 | 6540 | 0.7847 |
| 0.7501 | 0.3 | 7848 | 0.7819 |
| 0.8835 | 0.35 | 9156 | 0.7792 |
| 0.7261 | 0.4 | 10464 | 0.7769 |
| 0.9746 | 0.45 | 11772 | 0.7748 |
| 0.6884 | 0.5 | 13080 | 0.7734 |
| 0.6104 | 0.55 | 14388 | 0.7722 |
| 0.8876 | 0.6 | 15696 | 0.7710 |
| 0.9567 | 0.65 | 17004 | 0.7703 |
| 0.6915 | 0.7 | 18312 | 0.7696 |
| 0.8874 | 0.75 | 19620 | 0.7691 |
| 0.6124 | 0.8 | 20928 | 0.7686 |
| 0.8147 | 0.85 | 22236 | 0.7684 |
| 0.8021 | 0.9 | 23544 | 0.7683 |
| 0.8665 | 0.95 | 24852 | 0.7681 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0 |