CodeTed's picture
Update README.md
ef9dd97
|
raw
history blame
2.3 kB
metadata
license: apache-2.0
datasets:
  - shibing624/CSC
language:
  - zh
metrics:
  - accuracy
pipeline_tag: text2text-generation
tags:
  - CSC
  - CGED
  - spelling error

CSC T5 - T5 for Traditional and Simplified Chinese Spelling Correction

This model was obtained by instruction-tuning the corresponding ClueAI/PromptCLUE-base-v1-5 model on the spelling error corpus.

Model Details

Model Description

  • Language(s) (NLP): Chinese
  • Pretrained from model: ClueAI/PromptCLUE-base-v1-5
  • Pretrained by dataset: 1M UDN news corpus
  • Finetuned by dataset: shibing624/CSC spelling error corpus (CN + TC)

Model Sources

Evaluation

  • Chinese spelling error correction task(SIGHAN2015):
    • FPR: False Positive Rate
Model Base Model accuracy recall precision F1 FPR
GECToR hfl/chinese-macbert-base 71.7 71.6 71.8 71.7 28.2
GECToR_large hfl/chinese-macbert-large 73.7 76.5 72.5 74.4 29.1
T5 w/ pretrain ClueAI/PromptCLUE-base-v1-5 79.2 69.2 85.8 76.6 11.1
T5 w/o pretrain ClueAI/PromptCLUE-base-v1-5 75.1 63.1 82.2 71.4 13.3
PTCSpell N/A 79.0 89.4 83.8 N/A
MDCSpell N/A 77.2 81.5 79.3 N/A

Usage

from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("CodeTed/Chinese_Spelling_Correction_T5")
model = T5ForConditionalGeneration.from_pretrained("CodeTed/Chinese_Spelling_Correction_T5")
input_text = '糾正句子裡的錯字: 為了降低少子化,政府可以堆動獎勵生育的政策。'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=256)
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

Related Project

CodeTed/CGEDit - Chinese Grammatical Error Diagnosis by Task-Specific Instruction Tuning