CoderMan-O commited on
Commit
a695e8e
1 Parent(s): 3567695

Upload PPO BipedalWalker-v3 trained agent

Browse files
BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25002e686631d1d6ef8314099c0f4461913f66b3415cb2fb0799e9753fd659f6
3
+ size 176518
BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
BipedalWalker-v3/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7837148a5480>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7837148a5510>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7837148a55a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7837148a5630>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7837148a56c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7837148a5750>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7837148a57e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7837148a5870>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7837148a5900>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7837148a5990>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7837148a5a20>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7837148a5ab0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7837148ac840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1713747837256970951,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAB5kBj58tIo9Yo8GPtgi5TyvJyy+IidSP4hmar4BAIC/AAAAAJUAdT8aonq/CORtPs3+eD8AAAAAV3CvPkhKsD5N57Y+HifDPj4D1z67KfM+sPwOP8+pMD+zsnI/AACAPz2gYT0dg2c94qQXPl6Kgj2jdYO+wDsrPxBB9b0BAIC/AAAAAIQ3jz8AAAAAvL8ZPgAAgL8AAAAALIKoPnMRrD6SHLQ+qu++PpU0zz7jWOg+/HUHPwxnJj/to2A/AACAP/eWvz337Yk9CyZ7PTnblj1rKRK/KzosP3Zinj5t/3+/AACAP4thjT8AAAA0SEe2PqXxf78AAIA/MkOoPhT5pz7kras+YNSzPvWKwD6nqNY+zqr3Ps2lEj8oj0o/AACAPzylYD4vqHw94BwLPkqEBr22N4e+YgYsPlCCOr77/3+/AAAAADyJgD/w4FI94qmXPgEAgD8AAAAAy2K0Pp88tT7nQbo+uyPEPgd51D7fS+8+2PwJP9I9KT96w2E/AACAPxDP0z6z0wy9s5LnPmy/NL2Oj1+/goh8v2C1mzyDg4I/AACAP3INkT8A5Am58AAWP9kUgL8AAAAAmLSJPsoViz5cZY4+VXiVPixJoz538Lo+sqfgPoKuDD/jwzo/AACAP2r7F73gDIA93RCDPn8Y7j0rPCq/jtW5PlGRGz8AAIC/AAAAAC6Pjz9MDcS9CEa9PgIAgL8AAIA/h9upPtKkrD4is7M+3Ni/Pqkd0j6pOO0+o+MLPzNpNT+gpXg/AACAP52ywz3d4BS+RcS+Ph3luDx4vlW/wPvmPM15Az/5UYE/AACAP8Uujz8AhCG6PDZ1P0zgfj8AAAAAKR+RPhHFkj4K6Jc+yK2hPp9SsT5QGso+aM3pPl91DD/Ebzo/AACAP1bxpD1NVKc9NNMIPrwZRz2CSI2+nQGAP1iwCr5NSLS/AACAP/DLjz8AAJi1orPkPo0GgL8AAIA/i7acPpHDnT4JSaM+i9+rPopvuD5Z/84+6O7yPj/QFD88MUY/AACAP+U4xrv4STk9bh1iPkdxhb3u7bu9FnshP2Rhr779/3+/AAAAAL67jD8AAAAAuMGCvkuyKb8AAAAAqxq6PhWUwD5GIcs+uSDaPqH67T7BnQY/aosfP8GaQz8AAIA/AACAP1Y/Ar4SqAW+0E3QPhyJer0Vt1K/yN4Cv0rgXj///38/AACAP7cdiT+ESZI/0V1vP9DOqb4AAIA/oDOVPsAvmD4FBp4+a1uoPsLhuj5sZdc+LgoEP1s6Kz/aInU/AACAP2JAvj2itAs99oMWPl18TT1FeHO+/f9/PzApt70BAIC/AAAAAJUgkD8AAAAAIDU5vRxCR78AAAAA+KSwPs24sD4fbrU+Oke/Phz10D4luOs+ZkQIP50lJz+rSWM/AACAPzIk/TsMkVQ9TVkNPtv0KrzyLey+nx7gPuAnzL0BAIC/AACAP4JTkD8I8b29ym9XPzfVK74AAIA/u86IPsLPiT5+Eo4+ku+WPszcpD549rk+B+TZPisoAz87xC0/AACAP1AEgz6LEp68B3gNPy2Imr0OIFa/K8GBvzQuEz4AAIA/AAAAAA+haj8ORky/RrJQPwAAgD8AAAAAgUiLPg0LjT5o9JE+MNaaPoztqD4NR7w+8M7ZPl+hAj/3gik/5TRuP8pXlLqsbHI913kiPpNwTT2Dlam+VKW0PvB+nz39/3+/AACAP7VEkT8AAAAAeNUjPv3/f78AAAAAcp61PstXuj6GMME+t+nLPq9x2z4ul/E+WhcKPyd3KD/ak2I/AACAPy01jD6avg2+Usq1PiAL7T1VMVW/gJNLPdxArT6RzoA/AAAAACrfjz8AgHE4kAEbP0fPf78AAAAABYaYPji5nD6E5aQ++7exPt0XxD6lC+E+/ZUGP3HqLD/rv2U/AACAP7lGqDwSQyg7zKGCPhUqIL2PKzc+qhuiPx6/Bb8AAIC/AAAAAJhhjj8AAACxAOHhPff/fz8AAAAA0lmzPgViuT4OGsM+NUvRPv2J5D63TQQ/tlwaP3tFOD/NSHQ/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDpJJvo/zJ+MAWyUTWgEjAF0lEdAmDvfhQ3xWnV9lChoBkdAGOSDRMN+b2gHTZYFaAhHQJhBoR8MNMJ1fZQoaAZHQGD/XCbc45toB01ABmgIR0CYQ5EUj9n9dX2UKGgGR0BiK7asZHd5aAdNQAZoCEdAmESY+GGmDXV9lChoBkdAYsgCsfaHsWgHTUAGaAhHQJhJPru6VdJ1fZQoaAZHQGNrRLbpNbloB01ABmgIR0CYTG/yoXKsdX2UKGgGR0Bgxpf8dgfEaAdNQAZoCEdAmE4CLqD9O3V9lChoBkdAZESfozN2T2gHTUAGaAhHQJhnLlPrOZ91fZQoaAZHQGFGsbFS88NoB01ABmgIR0CYaiGSpzcRdX2UKGgGR0BjWzaXa8HwaAdNQAZoCEdAmG9jUAksz3V9lChoBkdAYHKGHpKSPmgHTUAGaAhHQJhy26ErXlN1fZQoaAZHQGLXhYNiH7BoB01ABmgIR0CYcunqVyFPdX2UKGgGR0BcMC44Ia99aAdNQAZoCEdAmHTJB5X2d3V9lChoBkdAYRPNRFZxJmgHTUAGaAhHQJh1+z7di2F1fZQoaAZHQGJed7OVxCJoB01ABmgIR0CYeJP4EfT1dX2UKGgGR0Bh1NzQu27WaAdNQAZoCEdAmHiOHWSU1XV9lChoBkdAY4Pz3h4t6GgHTUAGaAhHQJh7xhE0BOp1fZQoaAZHQGEkGBe5WiloB01ABmgIR0CYlUSjQAuJdX2UKGgGR0BisDgjyFwlaAdNQAZoCEdAmJhRdD6WPnV9lChoBkdAYaB/GVAzHmgHTUAGaAhHQJiZ9eLNwBJ1fZQoaAZHQGGV/RmbsnloB01ABmgIR0CYnotcv/R3dX2UKGgGR0BjNEHQhOgyaAdNQAZoCEdAmKHGDcuannV9lChoBkdAYtajAzpHJGgHTUAGaAhHQJijWecx0uF1fZQoaAZHwFDa0z0pVjtoB02gAWgIR0CYo9yT6i0wdX2UKGgGR0Bg+SEvkBCEaAdNQAZoCEdAmKaqkl/pdXV9lChoBkfAYCzcMVk+YGgHS4loCEdAmKd0E9t/F3V9lChoBkdAYrvTYNAkcGgHTUAGaAhHQJipIbjtG/h1fZQoaAZHwF4/HGjsUqRoB0t9aAhHQJiqrlHSWqt1fZQoaAZHQGKfdPDYRNBoB01ABmgIR0CYrmFfAsTWdX2UKGgGR0BkxitLcsUZaAdNQAZoCEdAmMVr1EmY0HV9lChoBkdAYLHuogmqpGgHTUAGaAhHQJjFf+717IF1fZQoaAZHQGPBvAO8TSNoB01ABmgIR0CYyGRCQcPwdX2UKGgGR8Bgiia7VawEaAdLdGgIR0CYyfnXNC7cdX2UKGgGR0BgrFyR0U48aAdNQAZoCEdAmMojhDPWx3V9lChoBkdAYueTRplBhWgHTUAGaAhHQJjNmCiAUcp1fZQoaAZHQGBciA+Y+jdoB01ABmgIR0CYzZFAE+xGdX2UKGgGR0Bf22KAJ9iMaAdNQAZoCEdAmNC8aCL/CXV9lChoBkdAYZtPv8ZUDWgHTUAGaAhHQJjWZHtnf2t1fZQoaAZHwFMwRxtHhCNoB02FAWgIR0CY14aFVT73dX2UKGgGR8BL2ONPxhDxaAdNhAJoCEdAmNhqHTI/7nV9lChoBkdAYpY+VTrE+GgHTUAGaAhHQJjZYTBZZB91fZQoaAZHQEegNmUW2w5oB03hBWgIR0CY23R/ViF1dX2UKGgGR0BeyKc/dIoWaAdNQAZoCEdAmOEfkvK2a3V9lChoBkdAY9NmYBvJimgHTUAGaAhHQJj2MdU83dd1fZQoaAZHQGKvGHYYixFoB01ABmgIR0CY+y7YkE9udX2UKGgGR0BkP3SH/LkkaAdNQAZoCEdAmP6jGkvboXV9lChoBkdAY/TqIJqqO2gHTUAGaAhHQJkAIcCHRCx1fZQoaAZHQGJutX5nDixoB01ABmgIR0CZA96E8JUpdX2UKGgGR0BjFZePaL4vaAdNQAZoCEdAmQlOUt7KJXV9lChoBkdAYk3f3N9piGgHTUAGaAhHQJkKVnbqQil1fZQoaAZHQGR60FB6a9doB01ABmgIR0CZCm31SOzZdX2UKGgGR8AUOeZof0VaaAdNVQRoCEdAmQtlMuez2XV9lChoBkdAYfjJGOMl1WgHTUAGaAhHQJkNKWldkax1fZQoaAZHQGJZr/CIk7hoB01ABmgIR0CZEHQDFId3dX2UKGgGR0BgvwR5C4SZaAdNQAZoCEdAmSpKJ/G2kXV9lChoBkdATnjDl5nlGWgHTSYGaAhHQJkrAju8brF1fZQoaAZHQGLV/uTibUhoB01ABmgIR0CZLvN2TxG2dX2UKGgGR0BiFDwc5sCUaAdNQAZoCEdAmTFo9HMEBHV9lChoBkfAUziZE2HclGgHTSMBaAhHQJk2xCVrylN1fZQoaAZHQGHCEhJRO1xoB01ABmgIR0CZNwsLv1DjdX2UKGgGR0Bidag2606YaAdNQAZoCEdAmTiaFAVwgnV9lChoBkdAYBmyk9ECvGgHTUAGaAhHQJk74l2NedF1fZQoaAZHQESNFjurp7loB036BWgIR0CZPhIWgvlEdX2UKGgGR0BhgluivgWKaAdNQAZoCEdAmT5dYOlO5HV9lChoBkfASNlknTiKi2gHTWYCaAhHQJlBZm/WUbF1fZQoaAZHQGIImBOHnEFoB01ABmgIR0CZVaEZiuuBdX2UKGgGR8AaoYrJ8v25aAdNHwRoCEdAmVuQvtdAxHV9lChoBkdAYwg+xGDtgWgHTUAGaAhHQJlc9sKsuFp1fZQoaAZHQGPEXpwCKaZoB01ABmgIR0CZXo8gIQe4dX2UKGgGR0BkH2Dxsl9jaAdNQAZoCEdAmV6zf779AHV9lChoBkdAYtz029+PR2gHTUAGaAhHQJlgLxNIsiB1fZQoaAZHQEBY7J4jbBZoB00UBmgIR0CZYUX/HYHxdX2UKGgGR0BjRjZ6D5CXaAdNQAZoCEdAmWWq4YrJ83V9lChoBkdAYgWF/QSi/WgHTUAGaAhHQJlrURTS9dx1fZQoaAZHwDzbYg7o0Q9oB01gA2gIR0CZb3l7dBSldX2UKGgGR8BGdiml67d0aAdNVQRoCEdAmXCOWWyC4HV9lChoBkdARhRVwPy08mgHTb4FaAhHQJmGKEGqxTt1fZQoaAZHQGSWxV6u4gBoB01ABmgIR0CZh720zCUHdX2UKGgGR0BiojIzWPLgaAdNQAZoCEdAmYgEOmR/3HV9lChoBkfAP7agIyCWeGgHTdADaAhHQJmKA/cFhXt1fZQoaAZHQGNqHDiwSrZoB01ABmgIR0CZjpV45cTrdX2UKGgGR0Bhb+pqASWaaAdNQAZoCEdAmZHc2R7qp3V9lChoBkfAWHNUR3/xUmgHS1loCEdAmZTCL/CIlHV9lChoBkdAYqXW4mTkhmgHTUAGaAhHQJmVt++dsi11fZQoaAZHQGJ4sQd0aIhoB01ABmgIR0CZnKA93bEhdX2UKGgGR0BicrvmYBvKaAdNQAZoCEdAmZ6osVclgXV9lChoBkdAYZKRHww0wmgHTUAGaAhHQJmewGKQ7tB1fZQoaAZHQGIQUEX+ERJoB01ABmgIR0CZn7KaXrt3dX2UKGgGR0BkMBFgDzRQaAdNQAZoCEdAmaBnPiT+vXV9lChoBkdAYfwgUUO/cmgHTUAGaAhHQJm2qcmShal1fZQoaAZHQGMyuPV/c35oB01ABmgIR0CZvRszEaVEdX2UKGgGR0BiFytYB/7SaAdNQAZoCEdAmcNCG34KyHV9lChoBkdAZHY5Etuk12gHTUAGaAhHQJnFIpG4I8h1fZQoaAZHQEDioXKr7wdoB03pBWgIR0CZxomrbQC0dX2UKGgGR0Bke8stkFwDaAdNQAZoCEdAmcqDRtxdZHV9lChoBkdAYgLuy/sVtWgHTUAGaAhHQJnKyQgcLjR1fZQoaAZHQGGk16NVBD5oB01ABmgIR0CZzJ8twrDqdX2UKGgGR8BR/fvOQhfTaAdNdQFoCEdAmc3wW8AaN3V9lChoBkdAY72i48U21mgHTUAGaAhHQJnPtNpM6BB1fZQoaAZHwDIV5HEuQIVoB00ABGgIR0CZ0JHAh0QsdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 492,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
61
+ "_shape": [
62
+ 24
63
+ ],
64
+ "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
65
+ "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
66
+ "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
67
+ "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True]",
75
+ "bounded_above": "[ True True True True]",
76
+ "_shape": [
77
+ 4
78
+ ],
79
+ "low": "[-1. -1. -1. -1.]",
80
+ "high": "[1. 1. 1. 1.]",
81
+ "low_repr": "-1.0",
82
+ "high_repr": "1.0",
83
+ "_np_random": null
84
+ },
85
+ "n_envs": 16,
86
+ "n_steps": 1024,
87
+ "gamma": 0.999,
88
+ "gae_lambda": 0.98,
89
+ "ent_coef": 0.01,
90
+ "vf_coef": 0.5,
91
+ "max_grad_norm": 0.5,
92
+ "batch_size": 64,
93
+ "n_epochs": 4,
94
+ "clip_range": {
95
+ ":type:": "<class 'function'>",
96
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
97
+ },
98
+ "clip_range_vf": null,
99
+ "normalize_advantage": true,
100
+ "target_kl": null,
101
+ "lr_schedule": {
102
+ ":type:": "<class 'function'>",
103
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
104
+ }
105
+ }
BipedalWalker-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c41e36a43ccb5c7cf09a990192d0c408a27759501eef118a385e64b0fd7471fc
3
+ size 105121
BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4df9aeb3f544e1e1203bd0f35c817a97f4c13b38763cdca427d20d95ff32c2dc
3
+ size 52143
BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BipedalWalker-v3
16
+ type: BipedalWalker-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 4.34 +/- 97.02
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **BipedalWalker-v3**
25
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7837148a5480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7837148a5510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7837148a55a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7837148a5630>", "_build": "<function ActorCriticPolicy._build at 0x7837148a56c0>", "forward": "<function ActorCriticPolicy.forward at 0x7837148a5750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7837148a57e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7837148a5870>", "_predict": "<function ActorCriticPolicy._predict at 0x7837148a5900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7837148a5990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7837148a5a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7837148a5ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7837148ac840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713747837256970951, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAB5kBj58tIo9Yo8GPtgi5TyvJyy+IidSP4hmar4BAIC/AAAAAJUAdT8aonq/CORtPs3+eD8AAAAAV3CvPkhKsD5N57Y+HifDPj4D1z67KfM+sPwOP8+pMD+zsnI/AACAPz2gYT0dg2c94qQXPl6Kgj2jdYO+wDsrPxBB9b0BAIC/AAAAAIQ3jz8AAAAAvL8ZPgAAgL8AAAAALIKoPnMRrD6SHLQ+qu++PpU0zz7jWOg+/HUHPwxnJj/to2A/AACAP/eWvz337Yk9CyZ7PTnblj1rKRK/KzosP3Zinj5t/3+/AACAP4thjT8AAAA0SEe2PqXxf78AAIA/MkOoPhT5pz7kras+YNSzPvWKwD6nqNY+zqr3Ps2lEj8oj0o/AACAPzylYD4vqHw94BwLPkqEBr22N4e+YgYsPlCCOr77/3+/AAAAADyJgD/w4FI94qmXPgEAgD8AAAAAy2K0Pp88tT7nQbo+uyPEPgd51D7fS+8+2PwJP9I9KT96w2E/AACAPxDP0z6z0wy9s5LnPmy/NL2Oj1+/goh8v2C1mzyDg4I/AACAP3INkT8A5Am58AAWP9kUgL8AAAAAmLSJPsoViz5cZY4+VXiVPixJoz538Lo+sqfgPoKuDD/jwzo/AACAP2r7F73gDIA93RCDPn8Y7j0rPCq/jtW5PlGRGz8AAIC/AAAAAC6Pjz9MDcS9CEa9PgIAgL8AAIA/h9upPtKkrD4is7M+3Ni/Pqkd0j6pOO0+o+MLPzNpNT+gpXg/AACAP52ywz3d4BS+RcS+Ph3luDx4vlW/wPvmPM15Az/5UYE/AACAP8Uujz8AhCG6PDZ1P0zgfj8AAAAAKR+RPhHFkj4K6Jc+yK2hPp9SsT5QGso+aM3pPl91DD/Ebzo/AACAP1bxpD1NVKc9NNMIPrwZRz2CSI2+nQGAP1iwCr5NSLS/AACAP/DLjz8AAJi1orPkPo0GgL8AAIA/i7acPpHDnT4JSaM+i9+rPopvuD5Z/84+6O7yPj/QFD88MUY/AACAP+U4xrv4STk9bh1iPkdxhb3u7bu9FnshP2Rhr779/3+/AAAAAL67jD8AAAAAuMGCvkuyKb8AAAAAqxq6PhWUwD5GIcs+uSDaPqH67T7BnQY/aosfP8GaQz8AAIA/AACAP1Y/Ar4SqAW+0E3QPhyJer0Vt1K/yN4Cv0rgXj///38/AACAP7cdiT+ESZI/0V1vP9DOqb4AAIA/oDOVPsAvmD4FBp4+a1uoPsLhuj5sZdc+LgoEP1s6Kz/aInU/AACAP2JAvj2itAs99oMWPl18TT1FeHO+/f9/PzApt70BAIC/AAAAAJUgkD8AAAAAIDU5vRxCR78AAAAA+KSwPs24sD4fbrU+Oke/Phz10D4luOs+ZkQIP50lJz+rSWM/AACAPzIk/TsMkVQ9TVkNPtv0KrzyLey+nx7gPuAnzL0BAIC/AACAP4JTkD8I8b29ym9XPzfVK74AAIA/u86IPsLPiT5+Eo4+ku+WPszcpD549rk+B+TZPisoAz87xC0/AACAP1AEgz6LEp68B3gNPy2Imr0OIFa/K8GBvzQuEz4AAIA/AAAAAA+haj8ORky/RrJQPwAAgD8AAAAAgUiLPg0LjT5o9JE+MNaaPoztqD4NR7w+8M7ZPl+hAj/3gik/5TRuP8pXlLqsbHI913kiPpNwTT2Dlam+VKW0PvB+nz39/3+/AACAP7VEkT8AAAAAeNUjPv3/f78AAAAAcp61PstXuj6GMME+t+nLPq9x2z4ul/E+WhcKPyd3KD/ak2I/AACAPy01jD6avg2+Usq1PiAL7T1VMVW/gJNLPdxArT6RzoA/AAAAACrfjz8AgHE4kAEbP0fPf78AAAAABYaYPji5nD6E5aQ++7exPt0XxD6lC+E+/ZUGP3HqLD/rv2U/AACAP7lGqDwSQyg7zKGCPhUqIL2PKzc+qhuiPx6/Bb8AAIC/AAAAAJhhjj8AAACxAOHhPff/fz8AAAAA0lmzPgViuT4OGsM+NUvRPv2J5D63TQQ/tlwaP3tFOD/NSHQ/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDpJJvo/zJ+MAWyUTWgEjAF0lEdAmDvfhQ3xWnV9lChoBkdAGOSDRMN+b2gHTZYFaAhHQJhBoR8MNMJ1fZQoaAZHQGD/XCbc45toB01ABmgIR0CYQ5EUj9n9dX2UKGgGR0BiK7asZHd5aAdNQAZoCEdAmESY+GGmDXV9lChoBkdAYsgCsfaHsWgHTUAGaAhHQJhJPru6VdJ1fZQoaAZHQGNrRLbpNbloB01ABmgIR0CYTG/yoXKsdX2UKGgGR0Bgxpf8dgfEaAdNQAZoCEdAmE4CLqD9O3V9lChoBkdAZESfozN2T2gHTUAGaAhHQJhnLlPrOZ91fZQoaAZHQGFGsbFS88NoB01ABmgIR0CYaiGSpzcRdX2UKGgGR0BjWzaXa8HwaAdNQAZoCEdAmG9jUAksz3V9lChoBkdAYHKGHpKSPmgHTUAGaAhHQJhy26ErXlN1fZQoaAZHQGLXhYNiH7BoB01ABmgIR0CYcunqVyFPdX2UKGgGR0BcMC44Ia99aAdNQAZoCEdAmHTJB5X2d3V9lChoBkdAYRPNRFZxJmgHTUAGaAhHQJh1+z7di2F1fZQoaAZHQGJed7OVxCJoB01ABmgIR0CYeJP4EfT1dX2UKGgGR0Bh1NzQu27WaAdNQAZoCEdAmHiOHWSU1XV9lChoBkdAY4Pz3h4t6GgHTUAGaAhHQJh7xhE0BOp1fZQoaAZHQGEkGBe5WiloB01ABmgIR0CYlUSjQAuJdX2UKGgGR0BisDgjyFwlaAdNQAZoCEdAmJhRdD6WPnV9lChoBkdAYaB/GVAzHmgHTUAGaAhHQJiZ9eLNwBJ1fZQoaAZHQGGV/RmbsnloB01ABmgIR0CYnotcv/R3dX2UKGgGR0BjNEHQhOgyaAdNQAZoCEdAmKHGDcuannV9lChoBkdAYtajAzpHJGgHTUAGaAhHQJijWecx0uF1fZQoaAZHwFDa0z0pVjtoB02gAWgIR0CYo9yT6i0wdX2UKGgGR0Bg+SEvkBCEaAdNQAZoCEdAmKaqkl/pdXV9lChoBkfAYCzcMVk+YGgHS4loCEdAmKd0E9t/F3V9lChoBkdAYrvTYNAkcGgHTUAGaAhHQJipIbjtG/h1fZQoaAZHwF4/HGjsUqRoB0t9aAhHQJiqrlHSWqt1fZQoaAZHQGKfdPDYRNBoB01ABmgIR0CYrmFfAsTWdX2UKGgGR0BkxitLcsUZaAdNQAZoCEdAmMVr1EmY0HV9lChoBkdAYLHuogmqpGgHTUAGaAhHQJjFf+717IF1fZQoaAZHQGPBvAO8TSNoB01ABmgIR0CYyGRCQcPwdX2UKGgGR8Bgiia7VawEaAdLdGgIR0CYyfnXNC7cdX2UKGgGR0BgrFyR0U48aAdNQAZoCEdAmMojhDPWx3V9lChoBkdAYueTRplBhWgHTUAGaAhHQJjNmCiAUcp1fZQoaAZHQGBciA+Y+jdoB01ABmgIR0CYzZFAE+xGdX2UKGgGR0Bf22KAJ9iMaAdNQAZoCEdAmNC8aCL/CXV9lChoBkdAYZtPv8ZUDWgHTUAGaAhHQJjWZHtnf2t1fZQoaAZHwFMwRxtHhCNoB02FAWgIR0CY14aFVT73dX2UKGgGR8BL2ONPxhDxaAdNhAJoCEdAmNhqHTI/7nV9lChoBkdAYpY+VTrE+GgHTUAGaAhHQJjZYTBZZB91fZQoaAZHQEegNmUW2w5oB03hBWgIR0CY23R/ViF1dX2UKGgGR0BeyKc/dIoWaAdNQAZoCEdAmOEfkvK2a3V9lChoBkdAY9NmYBvJimgHTUAGaAhHQJj2MdU83dd1fZQoaAZHQGKvGHYYixFoB01ABmgIR0CY+y7YkE9udX2UKGgGR0BkP3SH/LkkaAdNQAZoCEdAmP6jGkvboXV9lChoBkdAY/TqIJqqO2gHTUAGaAhHQJkAIcCHRCx1fZQoaAZHQGJutX5nDixoB01ABmgIR0CZA96E8JUpdX2UKGgGR0BjFZePaL4vaAdNQAZoCEdAmQlOUt7KJXV9lChoBkdAYk3f3N9piGgHTUAGaAhHQJkKVnbqQil1fZQoaAZHQGR60FB6a9doB01ABmgIR0CZCm31SOzZdX2UKGgGR8AUOeZof0VaaAdNVQRoCEdAmQtlMuez2XV9lChoBkdAYfjJGOMl1WgHTUAGaAhHQJkNKWldkax1fZQoaAZHQGJZr/CIk7hoB01ABmgIR0CZEHQDFId3dX2UKGgGR0BgvwR5C4SZaAdNQAZoCEdAmSpKJ/G2kXV9lChoBkdATnjDl5nlGWgHTSYGaAhHQJkrAju8brF1fZQoaAZHQGLV/uTibUhoB01ABmgIR0CZLvN2TxG2dX2UKGgGR0BiFDwc5sCUaAdNQAZoCEdAmTFo9HMEBHV9lChoBkfAUziZE2HclGgHTSMBaAhHQJk2xCVrylN1fZQoaAZHQGHCEhJRO1xoB01ABmgIR0CZNwsLv1DjdX2UKGgGR0Bidag2606YaAdNQAZoCEdAmTiaFAVwgnV9lChoBkdAYBmyk9ECvGgHTUAGaAhHQJk74l2NedF1fZQoaAZHQESNFjurp7loB036BWgIR0CZPhIWgvlEdX2UKGgGR0BhgluivgWKaAdNQAZoCEdAmT5dYOlO5HV9lChoBkfASNlknTiKi2gHTWYCaAhHQJlBZm/WUbF1fZQoaAZHQGIImBOHnEFoB01ABmgIR0CZVaEZiuuBdX2UKGgGR8AaoYrJ8v25aAdNHwRoCEdAmVuQvtdAxHV9lChoBkdAYwg+xGDtgWgHTUAGaAhHQJlc9sKsuFp1fZQoaAZHQGPEXpwCKaZoB01ABmgIR0CZXo8gIQe4dX2UKGgGR0BkH2Dxsl9jaAdNQAZoCEdAmV6zf779AHV9lChoBkdAYtz029+PR2gHTUAGaAhHQJlgLxNIsiB1fZQoaAZHQEBY7J4jbBZoB00UBmgIR0CZYUX/HYHxdX2UKGgGR0BjRjZ6D5CXaAdNQAZoCEdAmWWq4YrJ83V9lChoBkdAYgWF/QSi/WgHTUAGaAhHQJlrURTS9dx1fZQoaAZHwDzbYg7o0Q9oB01gA2gIR0CZb3l7dBSldX2UKGgGR8BGdiml67d0aAdNVQRoCEdAmXCOWWyC4HV9lChoBkdARhRVwPy08mgHTb4FaAhHQJmGKEGqxTt1fZQoaAZHQGSWxV6u4gBoB01ABmgIR0CZh720zCUHdX2UKGgGR0BiojIzWPLgaAdNQAZoCEdAmYgEOmR/3HV9lChoBkfAP7agIyCWeGgHTdADaAhHQJmKA/cFhXt1fZQoaAZHQGNqHDiwSrZoB01ABmgIR0CZjpV45cTrdX2UKGgGR0Bhb+pqASWaaAdNQAZoCEdAmZHc2R7qp3V9lChoBkfAWHNUR3/xUmgHS1loCEdAmZTCL/CIlHV9lChoBkdAYqXW4mTkhmgHTUAGaAhHQJmVt++dsi11fZQoaAZHQGJ4sQd0aIhoB01ABmgIR0CZnKA93bEhdX2UKGgGR0BicrvmYBvKaAdNQAZoCEdAmZ6osVclgXV9lChoBkdAYZKRHww0wmgHTUAGaAhHQJmewGKQ7tB1fZQoaAZHQGIQUEX+ERJoB01ABmgIR0CZn7KaXrt3dX2UKGgGR0BkMBFgDzRQaAdNQAZoCEdAmaBnPiT+vXV9lChoBkdAYfwgUUO/cmgHTUAGaAhHQJm2qcmShal1fZQoaAZHQGMyuPV/c35oB01ABmgIR0CZvRszEaVEdX2UKGgGR0BiFytYB/7SaAdNQAZoCEdAmcNCG34KyHV9lChoBkdAZHY5Etuk12gHTUAGaAhHQJnFIpG4I8h1fZQoaAZHQEDioXKr7wdoB03pBWgIR0CZxomrbQC0dX2UKGgGR0Bke8stkFwDaAdNQAZoCEdAmcqDRtxdZHV9lChoBkdAYgLuy/sVtWgHTUAGaAhHQJnKyQgcLjR1fZQoaAZHQGGk16NVBD5oB01ABmgIR0CZzJ8twrDqdX2UKGgGR8BR/fvOQhfTaAdNdQFoCEdAmc3wW8AaN3V9lChoBkdAY72i48U21mgHTUAGaAhHQJnPtNpM6BB1fZQoaAZHwDIV5HEuQIVoB00ABGgIR0CZ0JHAh0QsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (358 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 4.340193841396285, "std_reward": 97.02430787517349, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-22T01:34:56.104032"}