File size: 7,792 Bytes
66d9a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d674b
ed980e5
53d674b
2573c5e
 
 
57ddfde
9594be2
e3f9266
 
ed980e5
53d674b
ed980e5
6337c6d
57ddfde
4defe05
d981a81
53d674b
4defe05
2ec0205
4defe05
 
2ec0205
4defe05
 
 
 
2ec0205
d981a81
 
4defe05
 
 
 
 
d981a81
4defe05
 
 
 
 
 
d981a81
4defe05
 
6337c6d
53d674b
a4e799a
7d3a4bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e799a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
tags:
- text-generation-inference
- text-generation
- Sentiment Analysis
- qlora
- peft
license: apache-2.0
library_name: transformers
widget:
- messages:
  - role: user
    content: What is your name?
language:
- en
- ro
pipeline_tag: text-generation
model-index:
- name: CognitivessAI/cognitivess
  results:
  - task:
      type: text-generation
      name: Text Generation
    metrics:
      - name: Evaluation Status
        type: accuracy
        value: Pending
        description: Comprehensive evaluations are planned and will be conducted in the future.
model_type: CognitivessForCausalLM
quantization_config:
  load_in_8bit: true
  llm_int8_threshold: 6.0
fine_tuning:
  method: qlora
  peft_type: LORA
inference:
  parameters:
    max_new_tokens: 8192
    temperature: 0.7
    top_p: 0.95
    do_sample: true
---

<div align="center">
 <img src="https://cdn-uploads.huggingface.co/production/uploads/65ec00afa735404e87e1359e/u5qyAgn_2-Bh46nzOFlcI.png">
 <h2>Accessible and portable generative AI solutions for developers and businesses.</h2>
 </div>

 <p align="center" style="margin-top: 0px;">
     <a href="https://cognitivess.com">
    <span class="link-text" style=" margin-right: 5px;">Website</span>
  </a> |
  <a href="https://bella.cognitivess.com">
    <span class="link-text" style=" margin-right: 5px;">Demo</span>
  </a> |
  <a href="https://github.com/Cognitivess/cognitivess">
    <img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style=" margin-right: 5px;">GitHub</span>
  </a>
</p>

# Cognitivess

Cognitivess is an advanced language model developed by Cognitivess AI, based in Bucharest, Romania. This model is trained from scratch on a diverse and curated dataset, encompassing a wide range of knowledge domains and linguistic styles. Utilizing state-of-the-art Quantized Low-Rank Adaptation (QLoRA) techniques, Cognitivess delivers high-quality text generation while maintaining exceptional efficiency.

Key features:
- Built on a custom-designed architecture inspired by LLaMA, optimized for versatility and performance
- Trained on a rich tapestry of data sources, including scientific literature, creative writing, multilingual corpora, and real-world conversational data
- Employs advanced few-shot learning capabilities, allowing it to quickly adapt to new tasks with minimal examples
- Capable of generating text in multiple languages, with particular strength in English and Romanian
- Specialized in tasks such as text generation, sentiment analysis, and complex problem-solving across various domains
- Incorporates ethical AI principles, with built-in safeguards against generating harmful or biased content

Cognitivess aims to serve as more than just an AI assistant; it's designed to be a knowledgeable companion capable of engaging in substantive discussions on topics ranging from cutting-edge technology to classical literature. Whether you need help with data analysis, creative storytelling, or exploring abstract concepts, Cognitivess is equipped to provide nuanced and contextually appropriate responses.

This model represents Cognitivess AI's commitment to pushing the boundaries of natural language processing. By combining vast knowledge with advanced reasoning capabilities, Cognitivess strives to bridge the gap between artificial and human intelligence, opening new possibilities for AI applications across various industries and academic fields.


***Under the Cognitivess Open Model License, Cognitivess AI confirms:***
- Models are commercially usable. 
- You are free to create and distribute Derivative Models. 
- Cognitivess does not claim ownership to any outputs generated using the Models or Derivative Models.

### Intended use

Cognitivess is a multilingual chat model designed to support a variety of languages including English, Romanian, Spanish, French, German, and many more, intended for diverse language applications.


**Model Developer:** Cognitivess AI

**Model Dates:** Cognitivess was trained between July 2024.

**Data Freshness:** The pretraining data has a cutoff of June 2024. Training will continue beyond the current data cutoff date to incorporate new data as it becomes available.


### Model Architecture:

Cognitivess model architecture is Transformer-based and trained with a sequence length of 8192 tokens.

**Architecture Type:** Transformer (auto-regressive language model)



Try this model on [bella.cognitivess.com](https://bella.cognitivess.com/) now.


![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ec00afa735404e87e1359e/CQeAV4lwbQp1G8H5n4uWx.png)

## Usage

To use this model, first install the custom package:

```bash
# Install required packages
!pip install git+https://huggingface.co/CognitivessAI/cognitivess
```

Then, you can use the model like this:

```python
import cognitivess_model  # Ensure this imports the custom model package

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "CognitivessAI/cognitivess"

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Load the model
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float32,
    device_map="auto"
)

messages = [
    {"role": "user", "content": "Explain how large language models work in detail."},
]

input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(
    input_ids,
    do_sample=True,
    temperature=0.5,
    max_new_tokens=1024
)

response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

```

## Usage with LORA + Quantized Versions through bitsandbytes

To use this model, first install the custom package:

```bash
# Install required packages
!pip install git+https://huggingface.co/CognitivessAI/cognitivess
!pip install bitsandbytes
!pip install peft

```

Then, you can use the model like this:
```python
import cognitivess_model  # Ensure this imports the custom model package

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, get_peft_config, LoraConfig
import torch

model_id = "CognitivessAI/cognitivess"

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Define the quantization configuration
quantization_config = {
    "load_in_8bit": True,
    "llm_int8_threshold": 6.0
}

# Load the model with 8-bit quantization
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float32,
    device_map="auto",
    **quantization_config
)

# Define the fine-tuning configuration
fine_tuning_config = LoraConfig(
    r=8,
    lora_alpha=16,
    lora_dropout=0.1,
    target_modules=["q_proj", "v_proj"]
)

# Apply parameter-efficient fine-tuning (PEFT) using QLoRA
model = PeftModel(model, fine_tuning_config)

# Prepare the messages
messages = [
    {"role": "user", "content": "Explain how large language models work in detail."},
]

# Tokenize the input
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

# Define the inference parameters
inference_params = {
    "max_new_tokens": 8192,
    "temperature": 0.7,
    "top_p": 0.95,
    "do_sample": True
}

# Generate the response
outputs = model.generate(
    input_ids,
    **inference_params
)

# Decode and print the response
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

```

**Contact:**
<a href="mailto:hello@cognitivess.com">hello@cognitivess.com</a>