File size: 7,792 Bytes
66d9a78 53d674b ed980e5 53d674b 2573c5e 57ddfde 9594be2 e3f9266 ed980e5 53d674b ed980e5 6337c6d 57ddfde 4defe05 d981a81 53d674b 4defe05 2ec0205 4defe05 2ec0205 4defe05 2ec0205 d981a81 4defe05 d981a81 4defe05 d981a81 4defe05 6337c6d 53d674b a4e799a 7d3a4bf a4e799a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
tags:
- text-generation-inference
- text-generation
- Sentiment Analysis
- qlora
- peft
license: apache-2.0
library_name: transformers
widget:
- messages:
- role: user
content: What is your name?
language:
- en
- ro
pipeline_tag: text-generation
model-index:
- name: CognitivessAI/cognitivess
results:
- task:
type: text-generation
name: Text Generation
metrics:
- name: Evaluation Status
type: accuracy
value: Pending
description: Comprehensive evaluations are planned and will be conducted in the future.
model_type: CognitivessForCausalLM
quantization_config:
load_in_8bit: true
llm_int8_threshold: 6.0
fine_tuning:
method: qlora
peft_type: LORA
inference:
parameters:
max_new_tokens: 8192
temperature: 0.7
top_p: 0.95
do_sample: true
---
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65ec00afa735404e87e1359e/u5qyAgn_2-Bh46nzOFlcI.png">
<h2>Accessible and portable generative AI solutions for developers and businesses.</h2>
</div>
<p align="center" style="margin-top: 0px;">
<a href="https://cognitivess.com">
<span class="link-text" style=" margin-right: 5px;">Website</span>
</a> |
<a href="https://bella.cognitivess.com">
<span class="link-text" style=" margin-right: 5px;">Demo</span>
</a> |
<a href="https://github.com/Cognitivess/cognitivess">
<img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style=" margin-right: 5px;">GitHub</span>
</a>
</p>
# Cognitivess
Cognitivess is an advanced language model developed by Cognitivess AI, based in Bucharest, Romania. This model is trained from scratch on a diverse and curated dataset, encompassing a wide range of knowledge domains and linguistic styles. Utilizing state-of-the-art Quantized Low-Rank Adaptation (QLoRA) techniques, Cognitivess delivers high-quality text generation while maintaining exceptional efficiency.
Key features:
- Built on a custom-designed architecture inspired by LLaMA, optimized for versatility and performance
- Trained on a rich tapestry of data sources, including scientific literature, creative writing, multilingual corpora, and real-world conversational data
- Employs advanced few-shot learning capabilities, allowing it to quickly adapt to new tasks with minimal examples
- Capable of generating text in multiple languages, with particular strength in English and Romanian
- Specialized in tasks such as text generation, sentiment analysis, and complex problem-solving across various domains
- Incorporates ethical AI principles, with built-in safeguards against generating harmful or biased content
Cognitivess aims to serve as more than just an AI assistant; it's designed to be a knowledgeable companion capable of engaging in substantive discussions on topics ranging from cutting-edge technology to classical literature. Whether you need help with data analysis, creative storytelling, or exploring abstract concepts, Cognitivess is equipped to provide nuanced and contextually appropriate responses.
This model represents Cognitivess AI's commitment to pushing the boundaries of natural language processing. By combining vast knowledge with advanced reasoning capabilities, Cognitivess strives to bridge the gap between artificial and human intelligence, opening new possibilities for AI applications across various industries and academic fields.
***Under the Cognitivess Open Model License, Cognitivess AI confirms:***
- Models are commercially usable.
- You are free to create and distribute Derivative Models.
- Cognitivess does not claim ownership to any outputs generated using the Models or Derivative Models.
### Intended use
Cognitivess is a multilingual chat model designed to support a variety of languages including English, Romanian, Spanish, French, German, and many more, intended for diverse language applications.
**Model Developer:** Cognitivess AI
**Model Dates:** Cognitivess was trained between July 2024.
**Data Freshness:** The pretraining data has a cutoff of June 2024. Training will continue beyond the current data cutoff date to incorporate new data as it becomes available.
### Model Architecture:
Cognitivess model architecture is Transformer-based and trained with a sequence length of 8192 tokens.
**Architecture Type:** Transformer (auto-regressive language model)
Try this model on [bella.cognitivess.com](https://bella.cognitivess.com/) now.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ec00afa735404e87e1359e/CQeAV4lwbQp1G8H5n4uWx.png)
## Usage
To use this model, first install the custom package:
```bash
# Install required packages
!pip install git+https://huggingface.co/CognitivessAI/cognitivess
```
Then, you can use the model like this:
```python
import cognitivess_model # Ensure this imports the custom model package
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "CognitivessAI/cognitivess"
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load the model
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float32,
device_map="auto"
)
messages = [
{"role": "user", "content": "Explain how large language models work in detail."},
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(
input_ids,
do_sample=True,
temperature=0.5,
max_new_tokens=1024
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
## Usage with LORA + Quantized Versions through bitsandbytes
To use this model, first install the custom package:
```bash
# Install required packages
!pip install git+https://huggingface.co/CognitivessAI/cognitivess
!pip install bitsandbytes
!pip install peft
```
Then, you can use the model like this:
```python
import cognitivess_model # Ensure this imports the custom model package
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, get_peft_config, LoraConfig
import torch
model_id = "CognitivessAI/cognitivess"
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Define the quantization configuration
quantization_config = {
"load_in_8bit": True,
"llm_int8_threshold": 6.0
}
# Load the model with 8-bit quantization
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float32,
device_map="auto",
**quantization_config
)
# Define the fine-tuning configuration
fine_tuning_config = LoraConfig(
r=8,
lora_alpha=16,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj"]
)
# Apply parameter-efficient fine-tuning (PEFT) using QLoRA
model = PeftModel(model, fine_tuning_config)
# Prepare the messages
messages = [
{"role": "user", "content": "Explain how large language models work in detail."},
]
# Tokenize the input
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# Define the inference parameters
inference_params = {
"max_new_tokens": 8192,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True
}
# Generate the response
outputs = model.generate(
input_ids,
**inference_params
)
# Decode and print the response
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
**Contact:**
<a href="mailto:hello@cognitivess.com">hello@cognitivess.com</a> |