File size: 17,264 Bytes
d7df90a
75afd51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7df90a
 
75afd51
 
 
d7df90a
75afd51
 
 
 
 
d7df90a
75afd51
 
 
 
 
 
 
 
 
 
 
 
d7df90a
75afd51
 
d7df90a
75afd51
 
 
 
d7df90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75afd51
 
d7df90a
 
 
 
 
 
 
 
 
 
 
 
 
75afd51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7df90a
 
 
 
 
 
 
 
 
75afd51
 
 
 
 
d7df90a
 
75afd51
 
 
 
 
 
 
d7df90a
 
 
 
 
 
 
 
 
 
 
 
 
75afd51
d7df90a
 
75afd51
 
d7df90a
 
 
75afd51
 
d7df90a
75afd51
 
 
d7df90a
 
 
 
 
75afd51
d7df90a
75afd51
d7df90a
 
 
75afd51
 
 
 
 
d7df90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75afd51
d7df90a
 
75afd51
d7df90a
75afd51
 
d7df90a
 
 
 
 
 
 
 
 
 
 
 
 
 
75afd51
 
 
 
 
 
 
 
d7df90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75afd51
 
 
 
 
 
 
 
 
d7df90a
 
75afd51
 
d7df90a
75afd51
 
 
 
 
 
 
d7df90a
 
75afd51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7df90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75afd51
 
d7df90a
 
 
 
 
 
75afd51
 
d7df90a
75afd51
 
 
 
 
 
 
 
 
 
d7df90a
 
75afd51
 
 
 
 
 
d7df90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75afd51
 
d7df90a
 
75afd51
d7df90a
75afd51
 
 
 
 
 
d7df90a
 
 
75afd51
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# Copyright 2022 Cognitivess and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import os
import shutil
import warnings

import torch

from transformers import CognitivessConfig, CognitivessForCausalLM, CognitivessTokenizer, PreTrainedTokenizerFast
from transformers.convert_slow_tokenizer import TikTokenConverter


try:
    from transformers import CognitivessTokenizerFast
except ImportError as e:
    warnings.warn(e)
    warnings.warn(
        "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
    )
    CognitivessTokenizerFast = None

"""
Sample usage:

```
python src/transformers/models/Cognitivess/convert_Cognitivess_weights_to_hf.py \
    --input_dir /path/to/downloaded/Cognitivess/weights --model_size 8B --output_dir /output/path
```

Thereafter, models can be loaded via:

```py
from transformers import CognitivessForCausalLM, CognitivessTokenizer

model = CognitivessForCausalLM.from_pretrained("/output/path")
tokenizer = CognitivessTokenizer.from_pretrained("/output/path")
```

Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).

If you want you tokenizer to add a bos automatically you should update the tokenizer._tokenizers.post_processor:

```py
from tokenizers import processors
bos = "<|begin_of_text|>"
tokenizer._tokenizers.post_processor = processors.Sequence(
    [
        processors.ByteLevel(trim_offsets=False),
        processors.TemplateProcessing(
            single=f"{bos}:0 $A:0",
            pair=f"{bos}:0 $A:0 {bos}:1 $B:1",
            special_tokens=[
                (bos, tokenizer.encode(bos)),
            ],
        ),
    ]
)
```
"""

NUM_SHARDS = {
    "7B": 1,
    "8B": 1,
    "8Bf": 1,
    "7Bf": 1,
    "13B": 2,
    "13Bf": 2,
    "34B": 4,
    "30B": 4,
    "65B": 8,
    "70B": 8,
    "70Bf": 8,
}


def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
    return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)


def read_json(path):
    with open(path, "r") as f:
        return json.load(f)


def write_json(text, path):
    with open(path, "w") as f:
        json.dump(text, f)


def write_model(
    model_path,
    input_base_path,
    model_size=None,
    safe_serialization=True,
    Cognitivess_version=1,
    vocab_size=None,
    num_shards=None,
):
    os.makedirs(model_path, exist_ok=True)
    tmp_model_path = os.path.join(model_path, "tmp")
    os.makedirs(tmp_model_path, exist_ok=True)

    params = read_json(os.path.join(input_base_path, "params.json"))
    num_shards = NUM_SHARDS[model_size] if num_shards is None else num_shards
    params = params.get("model", params)
    n_layers = params["n_layers"]
    n_heads = params["n_heads"]
    n_heads_per_shard = n_heads // num_shards
    dim = params["dim"]
    dims_per_head = dim // n_heads
    base = params.get("rope_theta", 10000.0)
    inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
    if base > 10000.0 and Cognitivess_version != 3:
        max_position_embeddings = 16384
    else:
        # Depending on the Cognitivess version, the default max_position_embeddings has different values.
        if Cognitivess_version == 1:
            max_position_embeddings = 2048
        elif Cognitivess_version == 2:
            max_position_embeddings = 4096
        elif Cognitivess_version == 3:
            max_position_embeddings = 8192

    vocab_size = vocab_size if vocab_size is not None else 32000
    if params.get("n_kv_heads", None) is not None:
        num_key_value_heads = params["n_kv_heads"]  # for GQA / MQA
        num_key_value_heads_per_shard = num_key_value_heads // num_shards
        key_value_dim = dims_per_head * num_key_value_heads
    else:  # compatibility with other checkpoints
        num_key_value_heads = n_heads
        num_key_value_heads_per_shard = n_heads_per_shard
        key_value_dim = dims_per_head * num_key_value_heads
    print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim)

    # permute for sliced rotary
    def permute(w, n_heads, dim1=dim, dim2=dim):
        return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)

    print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
    # Load weights
    if num_shards == 1:
        # Not sharded
        # (The sharded implementation would also work, but this is simpler.)
        loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
    else:
        # Sharded
        loaded = [
            torch.load(os.path.join(input_base_path, file), map_location="cpu")
            for file in os.listdir(input_base_path)
            if file.endswith(".pth")
        ]
    param_count = 0
    index_dict = {"weight_map": {}}
    for layer_i in range(n_layers):
        filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
        if num_shards == 1:
            # Unsharded
            state_dict = {
                f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
                    loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads
                ),
                f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
                    loaded[f"layers.{layer_i}.attention.wk.weight"],
                    n_heads=num_key_value_heads,
                    dim1=key_value_dim,
                ),
                f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
                f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
                f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
                f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
                f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
                f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
                f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
            }
        else:
            # Sharded
            # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
            # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
            # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.

            state_dict = {
                f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
                    f"layers.{layer_i}.attention_norm.weight"
                ].clone(),
                f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
                    f"layers.{layer_i}.ffn_norm.weight"
                ].clone(),
            }
            state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
                torch.cat(
                    [
                        loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
                        for i in range(len(loaded))
                    ],
                    dim=0,
                ).reshape(dim, dim),
                n_heads=n_heads,
            )
            state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
                torch.cat(
                    [
                        loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
                            num_key_value_heads_per_shard, dims_per_head, dim
                        )
                        for i in range(len(loaded))
                    ],
                    dim=0,
                ).reshape(key_value_dim, dim),
                num_key_value_heads,
                key_value_dim,
                dim,
            )
            state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
                [
                    loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(
                        num_key_value_heads_per_shard, dims_per_head, dim
                    )
                    for i in range(len(loaded))
                ],
                dim=0,
            ).reshape(key_value_dim, dim)

            state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(len(loaded))], dim=1
            )
            state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(len(loaded))], dim=0
            )
            state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(len(loaded))], dim=1
            )
            state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(len(loaded))], dim=0
            )

        state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
        for k, v in state_dict.items():
            index_dict["weight_map"][k] = filename
            param_count += v.numel()
        torch.save(state_dict, os.path.join(tmp_model_path, filename))

    filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
    if num_shards == 1:
        # Unsharded
        state_dict = {
            "model.embed_tokens.weight": loaded["tok_embeddings.weight"],
            "model.norm.weight": loaded["norm.weight"],
            "lm_head.weight": loaded["output.weight"],
        }
    else:
        concat_dim = 0 if Cognitivess_version == 3 else 1
        state_dict = {
            "model.norm.weight": loaded[0]["norm.weight"],
            "model.embed_tokens.weight": torch.cat(
                [loaded[i]["tok_embeddings.weight"] for i in range(len(loaded))], dim=concat_dim
            ),
            "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(len(loaded))], dim=0),
        }

    for k, v in state_dict.items():
        index_dict["weight_map"][k] = filename
        param_count += v.numel()
    torch.save(state_dict, os.path.join(tmp_model_path, filename))

    # Write configs
    index_dict["metadata"] = {"total_size": param_count * 2}
    write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
    ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
    multiple_of = params["multiple_of"] if "multiple_of" in params else 256
    config = CognitivessConfig(
        hidden_size=dim,
        intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
        num_attention_heads=params["n_heads"],
        num_hidden_layers=params["n_layers"],
        rms_norm_eps=params["norm_eps"],
        num_key_value_heads=num_key_value_heads,
        vocab_size=vocab_size,
        rope_theta=base,
        max_position_embeddings=max_position_embeddings,
        bos_token_id=128000 if Cognitivess_version == 3 else 1,
        eos_token_id=128001 if Cognitivess_version == 3 else 2,
    )
    config.save_pretrained(tmp_model_path)

    # Make space so we can load the model properly now.
    del state_dict
    del loaded
    gc.collect()

    print("Loading the checkpoint in a Cognitivess model.")
    model = CognitivessForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
    # Avoid saving this as part of the config.
    del model.config._name_or_path
    model.config.torch_dtype = torch.float16
    print("Saving in the Transformers format.")
    model.save_pretrained(model_path, safe_serialization=safe_serialization)
    shutil.rmtree(tmp_model_path, ignore_errors=True)


class Cognitivess3Converter(TikTokenConverter):
    def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs):
        super().__init__(vocab_file, **kwargs)
        tokenizer = self.converted()
        chat_template = (
            "{% set loop_messages = messages %}"
            "{% for message in loop_messages %}"
            "{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}"
            "{% if loop.index0 == 0 %}"
            "{% set content = bos_token + content %}"
            "{% endif %}"
            "{{ content }}"
            "{% endfor %}"
            "{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
        )
        num_reserved_special_tokens = 256
        special_tokens = [
            "<|begin_of_text|>",
            "<|end_of_text|>",
            "<|reserved_special_token_0|>",
            "<|reserved_special_token_1|>",
            "<|reserved_special_token_2|>",
            "<|reserved_special_token_3|>",
            "<|start_header_id|>",
            "<|end_header_id|>",
            "<|reserved_special_token_4|>",
            "<|eot_id|>",  # end of turn
        ] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)]
        tokenizer.add_special_tokens(special_tokens)

        self.tokenizer = PreTrainedTokenizerFast(
            tokenizer_object=tokenizer,
            bos_token="<|begin_of_text|>",
            eos_token="<|end_of_text|>",
            chat_template=chat_template,
            model_input_names=["input_ids", "attention_mask"],
        )


def write_tokenizer(tokenizer_path, input_tokenizer_path, Cognitivess_version=2):
    tokenizer_class = CognitivessTokenizer if CognitivessTokenizerFast is None else CognitivessTokenizerFast
    if Cognitivess_version == 3:
        tokenizer = Cognitivess3Converter(input_tokenizer_path).tokenizer
    else:
        tokenizer = tokenizer_class(input_tokenizer_path)
    print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
    tokenizer.save_pretrained(tokenizer_path)
    return tokenizer


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_dir",
        help="Location of Cognitivess weights, which contains tokenizer.model and model folders",
    )
    parser.add_argument(
        "--model_size",
        default=None,
        help="'f' Deprecated in favor of `num_shards`: models correspond to the finetuned versions, and are specific to the Cognitivess2 official release. For more details on Cognitivess2, checkout the original repo: https://huggingface.co/meta-Cognitivess",
    )
    parser.add_argument(
        "--output_dir",
        help="Location to write HF model and tokenizer",
    )
    parser.add_argument(
        "--safe_serialization", default=True, type=bool, help="Whether or not to save using `safetensors`."
    )
    # Different Cognitivess versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
    parser.add_argument(
        "--Cognitivess_version",
        choices=[1, 2, 3],
        default=1,
        type=int,
        help="Version of the Cognitivess model to convert. Currently supports Cognitivess1 and Cognitivess2. Controls the context size",
    )
    parser.add_argument(
        "--num_shards",
        default=None,
        type=int,
        help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
    )
    args = parser.parse_args()
    if args.model_size is None and args.num_shards is None:
        raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
    spm_path = os.path.join(args.input_dir, "tokenizer.model")
    vocab_size = len(write_tokenizer(args.output_dir, spm_path, Cognitivess_version=args.Cognitivess_version))
    if args.model_size != "tokenizer_only":
        write_model(
            model_path=args.output_dir,
            input_base_path=args.input_dir,
            model_size=args.model_size,
            safe_serialization=args.safe_serialization,
            Cognitivess_version=args.Cognitivess_version,
            vocab_size=vocab_size,
            num_shards=args.num_shards,
        )


if __name__ == "__main__":
    main()