File size: 17,264 Bytes
d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 d7df90a 75afd51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# Copyright 2022 Cognitivess and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import CognitivessConfig, CognitivessForCausalLM, CognitivessTokenizer, PreTrainedTokenizerFast
from transformers.convert_slow_tokenizer import TikTokenConverter
try:
from transformers import CognitivessTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
CognitivessTokenizerFast = None
"""
Sample usage:
```
python src/transformers/models/Cognitivess/convert_Cognitivess_weights_to_hf.py \
--input_dir /path/to/downloaded/Cognitivess/weights --model_size 8B --output_dir /output/path
```
Thereafter, models can be loaded via:
```py
from transformers import CognitivessForCausalLM, CognitivessTokenizer
model = CognitivessForCausalLM.from_pretrained("/output/path")
tokenizer = CognitivessTokenizer.from_pretrained("/output/path")
```
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
If you want you tokenizer to add a bos automatically you should update the tokenizer._tokenizers.post_processor:
```py
from tokenizers import processors
bos = "<|begin_of_text|>"
tokenizer._tokenizers.post_processor = processors.Sequence(
[
processors.ByteLevel(trim_offsets=False),
processors.TemplateProcessing(
single=f"{bos}:0 $A:0",
pair=f"{bos}:0 $A:0 {bos}:1 $B:1",
special_tokens=[
(bos, tokenizer.encode(bos)),
],
),
]
)
```
"""
NUM_SHARDS = {
"7B": 1,
"8B": 1,
"8Bf": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"34B": 4,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
def read_json(path):
with open(path, "r") as f:
return json.load(f)
def write_json(text, path):
with open(path, "w") as f:
json.dump(text, f)
def write_model(
model_path,
input_base_path,
model_size=None,
safe_serialization=True,
Cognitivess_version=1,
vocab_size=None,
num_shards=None,
):
os.makedirs(model_path, exist_ok=True)
tmp_model_path = os.path.join(model_path, "tmp")
os.makedirs(tmp_model_path, exist_ok=True)
params = read_json(os.path.join(input_base_path, "params.json"))
num_shards = NUM_SHARDS[model_size] if num_shards is None else num_shards
params = params.get("model", params)
n_layers = params["n_layers"]
n_heads = params["n_heads"]
n_heads_per_shard = n_heads // num_shards
dim = params["dim"]
dims_per_head = dim // n_heads
base = params.get("rope_theta", 10000.0)
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
if base > 10000.0 and Cognitivess_version != 3:
max_position_embeddings = 16384
else:
# Depending on the Cognitivess version, the default max_position_embeddings has different values.
if Cognitivess_version == 1:
max_position_embeddings = 2048
elif Cognitivess_version == 2:
max_position_embeddings = 4096
elif Cognitivess_version == 3:
max_position_embeddings = 8192
vocab_size = vocab_size if vocab_size is not None else 32000
if params.get("n_kv_heads", None) is not None:
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
num_key_value_heads_per_shard = num_key_value_heads // num_shards
key_value_dim = dims_per_head * num_key_value_heads
else: # compatibility with other checkpoints
num_key_value_heads = n_heads
num_key_value_heads_per_shard = n_heads_per_shard
key_value_dim = dims_per_head * num_key_value_heads
print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim)
# permute for sliced rotary
def permute(w, n_heads, dim1=dim, dim2=dim):
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
# Load weights
if num_shards == 1:
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
else:
# Sharded
loaded = [
torch.load(os.path.join(input_base_path, file), map_location="cpu")
for file in os.listdir(input_base_path)
if file.endswith(".pth")
]
param_count = 0
index_dict = {"weight_map": {}}
for layer_i in range(n_layers):
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
if num_shards == 1:
# Unsharded
state_dict = {
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads
),
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
loaded[f"layers.{layer_i}.attention.wk.weight"],
n_heads=num_key_value_heads,
dim1=key_value_dim,
),
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
state_dict = {
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
f"layers.{layer_i}.attention_norm.weight"
].clone(),
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
f"layers.{layer_i}.ffn_norm.weight"
].clone(),
}
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(len(loaded))
],
dim=0,
).reshape(dim, dim),
n_heads=n_heads,
)
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
num_key_value_heads_per_shard, dims_per_head, dim
)
for i in range(len(loaded))
],
dim=0,
).reshape(key_value_dim, dim),
num_key_value_heads,
key_value_dim,
dim,
)
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(
num_key_value_heads_per_shard, dims_per_head, dim
)
for i in range(len(loaded))
],
dim=0,
).reshape(key_value_dim, dim)
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(len(loaded))], dim=1
)
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(len(loaded))], dim=0
)
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(len(loaded))], dim=1
)
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(len(loaded))], dim=0
)
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(tmp_model_path, filename))
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
if num_shards == 1:
# Unsharded
state_dict = {
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
"model.norm.weight": loaded["norm.weight"],
"lm_head.weight": loaded["output.weight"],
}
else:
concat_dim = 0 if Cognitivess_version == 3 else 1
state_dict = {
"model.norm.weight": loaded[0]["norm.weight"],
"model.embed_tokens.weight": torch.cat(
[loaded[i]["tok_embeddings.weight"] for i in range(len(loaded))], dim=concat_dim
),
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(len(loaded))], dim=0),
}
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(tmp_model_path, filename))
# Write configs
index_dict["metadata"] = {"total_size": param_count * 2}
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
multiple_of = params["multiple_of"] if "multiple_of" in params else 256
config = CognitivessConfig(
hidden_size=dim,
intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
num_attention_heads=params["n_heads"],
num_hidden_layers=params["n_layers"],
rms_norm_eps=params["norm_eps"],
num_key_value_heads=num_key_value_heads,
vocab_size=vocab_size,
rope_theta=base,
max_position_embeddings=max_position_embeddings,
bos_token_id=128000 if Cognitivess_version == 3 else 1,
eos_token_id=128001 if Cognitivess_version == 3 else 2,
)
config.save_pretrained(tmp_model_path)
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print("Loading the checkpoint in a Cognitivess model.")
model = CognitivessForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
# Avoid saving this as part of the config.
del model.config._name_or_path
model.config.torch_dtype = torch.float16
print("Saving in the Transformers format.")
model.save_pretrained(model_path, safe_serialization=safe_serialization)
shutil.rmtree(tmp_model_path, ignore_errors=True)
class Cognitivess3Converter(TikTokenConverter):
def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs):
super().__init__(vocab_file, **kwargs)
tokenizer = self.converted()
chat_template = (
"{% set loop_messages = messages %}"
"{% for message in loop_messages %}"
"{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}"
"{% if loop.index0 == 0 %}"
"{% set content = bos_token + content %}"
"{% endif %}"
"{{ content }}"
"{% endfor %}"
"{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
)
num_reserved_special_tokens = 256
special_tokens = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|reserved_special_token_2|>",
"<|reserved_special_token_3|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|reserved_special_token_4|>",
"<|eot_id|>", # end of turn
] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)]
tokenizer.add_special_tokens(special_tokens)
self.tokenizer = PreTrainedTokenizerFast(
tokenizer_object=tokenizer,
bos_token="<|begin_of_text|>",
eos_token="<|end_of_text|>",
chat_template=chat_template,
model_input_names=["input_ids", "attention_mask"],
)
def write_tokenizer(tokenizer_path, input_tokenizer_path, Cognitivess_version=2):
tokenizer_class = CognitivessTokenizer if CognitivessTokenizerFast is None else CognitivessTokenizerFast
if Cognitivess_version == 3:
tokenizer = Cognitivess3Converter(input_tokenizer_path).tokenizer
else:
tokenizer = tokenizer_class(input_tokenizer_path)
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
tokenizer.save_pretrained(tokenizer_path)
return tokenizer
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
help="Location of Cognitivess weights, which contains tokenizer.model and model folders",
)
parser.add_argument(
"--model_size",
default=None,
help="'f' Deprecated in favor of `num_shards`: models correspond to the finetuned versions, and are specific to the Cognitivess2 official release. For more details on Cognitivess2, checkout the original repo: https://huggingface.co/meta-Cognitivess",
)
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
parser.add_argument(
"--safe_serialization", default=True, type=bool, help="Whether or not to save using `safetensors`."
)
# Different Cognitivess versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
parser.add_argument(
"--Cognitivess_version",
choices=[1, 2, 3],
default=1,
type=int,
help="Version of the Cognitivess model to convert. Currently supports Cognitivess1 and Cognitivess2. Controls the context size",
)
parser.add_argument(
"--num_shards",
default=None,
type=int,
help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
)
args = parser.parse_args()
if args.model_size is None and args.num_shards is None:
raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
spm_path = os.path.join(args.input_dir, "tokenizer.model")
vocab_size = len(write_tokenizer(args.output_dir, spm_path, Cognitivess_version=args.Cognitivess_version))
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir,
input_base_path=args.input_dir,
model_size=args.model_size,
safe_serialization=args.safe_serialization,
Cognitivess_version=args.Cognitivess_version,
vocab_size=vocab_size,
num_shards=args.num_shards,
)
if __name__ == "__main__":
main() |