Rename cognitivess_model/tokenization_cognitivess.py to cognitivess_model/tokenization_Cognitivess.py
9b31a11
verified
# coding=utf-8 | |
# Copyright 2022 Cognitivess and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for Cognitivess.""" | |
import os | |
from shutil import copyfile | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple | |
import sentencepiece as spm | |
from ...convert_slow_tokenizer import import_protobuf | |
from ...tokenization_utils import AddedToken, PreTrainedTokenizer | |
from ...utils import logging | |
if TYPE_CHECKING: | |
from ...tokenization_utils_base import TextInput | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} | |
SPIECE_UNDERLINE = "▁" | |
B_INST, E_INST = "[INST]", "[/INST]" | |
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" | |
# fmt: off | |
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \ | |
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ | |
that your responses are socially unbiased and positive in nature. | |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \ | |
correct. If you don't know the answer to a question, please don't share false information.""" | |
# fmt: on | |
class CognitivessTokenizer(PreTrainedTokenizer): | |
""" | |
Construct a Cognitivess tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is | |
no padding token in the original model. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): | |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
pad_token (`str` or `tokenizers.AddedToken`, *optional*): | |
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by | |
attention mechanisms or loss computation. | |
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): | |
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for | |
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, | |
to set: | |
- `enable_sampling`: Enable subword regularization. | |
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
- `nbest_size = {0,1}`: No sampling is performed. | |
- `nbest_size > 1`: samples from the nbest_size results. | |
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
using forward-filtering-and-backward-sampling algorithm. | |
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
BPE-dropout. | |
add_bos_token (`bool`, *optional*, defaults to `True`): | |
Whether or not to add an `bos_token` at the start of sequences. | |
add_eos_token (`bool`, *optional*, defaults to `False`): | |
Whether or not to add an `eos_token` at the end of sequences. | |
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | |
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like | |
extra spaces. | |
use_default_system_prompt (`bool`, *optional*, defaults to `False`): | |
Whether or not the default system prompt for Cognitivess should be used. | |
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not to add spaces between special tokens. | |
legacy (`bool`, *optional*): | |
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622 | |
and #25224 which includes fixes to properly handle tokens that appear after special tokens. | |
Make sure to also set `from_slow` to `True`. | |
A simple example: | |
- `legacy=True`: | |
```python | |
>>> from transformers import CognitivessTokenizerFast | |
>>> tokenizer = CognitivessTokenizerFast.from_pretrained("CognitivessAI/cognitivess", legacy=True, from_slow=True) | |
>>> tokenizer.encode("Hello <s>.") # 869 is '▁.' | |
[1, 15043, 29871, 1, 869] | |
``` | |
- `legacy=False`: | |
```python | |
>>> from transformers import CognitivessTokenizerFast | |
>>> tokenizer = CognitivessTokenizerFast.from_pretrained("CognitivessAI/cognitivess", legacy=False, from_slow=True) | |
>>> tokenizer.encode("Hello <s>.") # 29889 is '.' | |
[1, 15043, 29871, 1, 29889] | |
``` | |
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. | |
add_prefix_space (`bool`, *optional*, defaults to `True`): | |
Whether or not to add an initial space to the input. This allows to treat the leading word just as any | |
other word. Again, this should be set with `from_slow=True` to make sure it's taken into account. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file, | |
unk_token="<unk>", | |
bos_token="<s>", | |
eos_token="</s>", | |
pad_token=None, | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
add_bos_token=True, | |
add_eos_token=False, | |
clean_up_tokenization_spaces=False, | |
use_default_system_prompt=False, | |
spaces_between_special_tokens=False, | |
legacy=None, | |
add_prefix_space=True, | |
**kwargs, | |
): | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token | |
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token | |
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token | |
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token | |
if legacy is None: | |
logger.warning_once( | |
f"You are using the default legacy behaviour of the {self.__class__}. This is" | |
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." | |
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" | |
" means, and thoroughly read the reason why this was added as explained in" | |
" https://github.com/huggingface/transformers/pull/24565 - if you loaded a Cognitivess tokenizer from a GGUF file" | |
" you can ignore this message" | |
) | |
legacy = True | |
self.legacy = legacy | |
self.vocab_file = vocab_file | |
self.add_bos_token = add_bos_token | |
self.add_eos_token = add_eos_token | |
self.use_default_system_prompt = use_default_system_prompt | |
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) | |
self.add_prefix_space = add_prefix_space | |
super().__init__( | |
bos_token=bos_token, | |
eos_token=eos_token, | |
unk_token=unk_token, | |
pad_token=pad_token, | |
add_bos_token=add_bos_token, | |
add_eos_token=add_eos_token, | |
sp_model_kwargs=self.sp_model_kwargs, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
use_default_system_prompt=use_default_system_prompt, | |
spaces_between_special_tokens=spaces_between_special_tokens, | |
legacy=legacy, | |
add_prefix_space=add_prefix_space, | |
**kwargs, | |
) | |
def unk_token_length(self): | |
return len(self.sp_model.encode(str(self.unk_token))) | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor | |
def get_spm_processor(self, from_slow=False): | |
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
if self.legacy or from_slow: # no dependency on protobuf | |
tokenizer.Load(self.vocab_file) | |
return tokenizer | |
with open(self.vocab_file, "rb") as f: | |
sp_model = f.read() | |
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") | |
model = model_pb2.ModelProto.FromString(sp_model) | |
normalizer_spec = model_pb2.NormalizerSpec() | |
normalizer_spec.add_dummy_prefix = False | |
model.normalizer_spec.MergeFrom(normalizer_spec) | |
sp_model = model.SerializeToString() | |
tokenizer.LoadFromSerializedProto(sp_model) | |
return tokenizer | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
state["sp_model_proto"] = self.sp_model.serialized_model_proto() | |
return state | |
def __setstate__(self, d): | |
self.__dict__ = d | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.LoadFromSerializedProto(self.sp_model_proto) | |
def vocab_size(self): | |
"""Returns vocab size""" | |
return self.sp_model.get_piece_size() | |
def get_vocab(self): | |
"""Returns vocab as a dict""" | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize | |
def tokenize(self, text: "TextInput", **kwargs) -> List[str]: | |
""" | |
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the | |
first token is special. | |
""" | |
if self.legacy or len(text) == 0: | |
return super().tokenize(text, **kwargs) | |
text = text.replace(SPIECE_UNDERLINE, " ") | |
if self.add_prefix_space: | |
text = SPIECE_UNDERLINE + text | |
tokens = super().tokenize(text, **kwargs) | |
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: | |
tokens = tokens[1:] | |
return tokens | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize | |
def _tokenize(self, text, **kwargs): | |
""" | |
Returns a tokenized string. | |
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any | |
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give | |
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the | |
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. | |
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. | |
""" | |
tokens = self.sp_model.encode(text, out_type=str) | |
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): | |
return tokens | |
# 1. Encode string + prefix ex: "<unk> Hey" | |
tokens = self.sp_model.encode(self.unk_token + text, out_type=str) | |
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] | |
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.sp_model.piece_to_id(token) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
token = self.sp_model.IdToPiece(index) | |
return token | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
# since we manually add the prefix space, we have to remove it when decoding | |
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space: | |
tokens[0] = tokens[0][1:] | |
current_sub_tokens = [] | |
out_string = "" | |
prev_is_special = False | |
for i, token in enumerate(tokens): | |
# make sure that special tokens are not decoded using sentencepiece model | |
if token in self.all_special_tokens: | |
if not prev_is_special and i != 0 and self.legacy: | |
out_string += " " | |
out_string += self.sp_model.decode(current_sub_tokens) + token | |
prev_is_special = True | |
current_sub_tokens = [] | |
else: | |
if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE): | |
out_string += " " | |
current_sub_tokens.append(token) | |
prev_is_special = False | |
out_string += self.sp_model.decode(current_sub_tokens) | |
return out_string | |
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
""" | |
Save the vocabulary and special tokens file to a directory. | |
Args: | |
save_directory (`str`): | |
The directory in which to save the vocabulary. | |
Returns: | |
`Tuple(str)`: Paths to the files saved. | |
""" | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
elif not os.path.isfile(self.vocab_file): | |
with open(out_vocab_file, "wb") as fi: | |
content_spiece_model = self.sp_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
return (out_vocab_file,) | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | |
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | |
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
output = bos_token_id + token_ids_0 + eos_token_id | |
if token_ids_1 is not None: | |
output = output + bos_token_id + token_ids_1 + eos_token_id | |
return output | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
bos_token_id = [1] if self.add_bos_token else [] | |
eos_token_id = [1] if self.add_eos_token else [] | |
if token_ids_1 is None: | |
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id | |
return ( | |
bos_token_id | |
+ ([0] * len(token_ids_0)) | |
+ eos_token_id | |
+ bos_token_id | |
+ ([0] * len(token_ids_1)) | |
+ eos_token_id | |
) | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT | |
sequence pair mask has the following format: | |
``` | |
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
``` | |
if token_ids_1 is None, only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (`List[int]`): | |
List of ids. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | |
""" | |
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | |
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) | |
if token_ids_1 is not None: | |
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) | |
return output | |
def default_chat_template(self): | |
""" | |
Cognitivess uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages. | |
Assistant messages do not have special tokens, because Cognitivess chat models are generally trained with strict | |
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering | |
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which | |
results in an unusual token ordering when it is present. This template should definitely be changed if you wish | |
to fine-tune a model with more flexible role ordering! | |
The output should look something like: | |
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos> | |
<bos>[INST] Prompt [/INST] | |
The reference for this chat template is [this code | |
snippet](https://github.com/facebookresearch/Cognitivess/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/Cognitivess/generation.py#L320-L362) | |
in the original repository. | |
""" | |
template = ( | |
"{% if messages[0]['role'] == 'system' %}" | |
"{% set loop_messages = messages[1:] %}" # Extract system message if it's present | |
"{% set system_message = messages[0]['content'] %}" | |
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}" | |
"{% set loop_messages = messages %}" # Or use the default system message if the flag is set | |
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" | |
"{% else %}" | |
"{% set loop_messages = messages %}" | |
"{% set system_message = false %}" | |
"{% endif %}" | |
"{% for message in loop_messages %}" # Loop over all non-system messages | |
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" | |
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" | |
"{% endif %}" | |
"{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message | |
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}" | |
"{% else %}" | |
"{% set content = message['content'] %}" | |
"{% endif %}" | |
"{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way | |
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" | |
"{% elif message['role'] == 'system' %}" | |
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}" | |
"{% elif message['role'] == 'assistant' %}" | |
"{{ ' ' + content.strip() + ' ' + eos_token }}" | |
"{% endif %}" | |
"{% endfor %}" | |
) | |
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") | |
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") | |
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) | |
return template |