Rename cognitivess_model/tokenization_cognitivess_fast.py to cognitivess_model/tokenization_Cognitivess_fast.py
2c6c6cc
verified
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from shutil import copyfile | |
from typing import Optional, Tuple | |
from tokenizers import processors | |
from ...tokenization_utils_fast import PreTrainedTokenizerFast | |
from ...utils import is_sentencepiece_available, logging | |
from ...utils.versions import require_version | |
require_version("tokenizers>=0.13.3") | |
if is_sentencepiece_available(): | |
from .tokenization_Cognitivess import CognitivessTokenizer | |
else: | |
CognitivessTokenizer = None | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"} | |
B_INST, E_INST = "[INST]", "[/INST]" | |
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" | |
# fmt: off | |
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \ | |
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ | |
that your responses are socially unbiased and positive in nature. | |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \ | |
correct. If you don't know the answer to a question, please don't share false information.""" | |
# fmt: on | |
class CognitivessTokenizerFast(PreTrainedTokenizerFast): | |
""" | |
Construct a Cognitivess tokenizer. Based on byte-level Byte-Pair-Encoding. | |
This uses notably ByteFallback and no normalization. | |
```python | |
>>> from transformers import CognitivessTokenizerFast | |
>>> tokenizer = CognitivessTokenizerFast.from_pretrained("hf-internal-testing/Cognitivess-tokenizer") | |
>>> tokenizer.encode("Hello this is a test") | |
[1, 15043, 445, 338, 263, 1243] | |
``` | |
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or | |
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the | |
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout | |
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. | |
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should | |
refer to this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`, *optional*): | |
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that | |
contains the vocabulary necessary to instantiate a tokenizer. | |
tokenizer_file (`str`, *optional*): | |
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that | |
contains everything needed to load the tokenizer. | |
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | |
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like | |
extra spaces. | |
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): | |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
add_bos_token (`bool`, *optional*, defaults to `True`): | |
Whether or not to add an `bos_token` at the start of sequences. | |
add_eos_token (`bool`, *optional*, defaults to `False`): | |
Whether or not to add an `eos_token` at the end of sequences. | |
use_default_system_prompt (`bool`, *optional*, defaults to `False`): | |
Whether or not the default system prompt for Cognitivess should be used | |
legacy (`bool`, *optional*): | |
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622 | |
and #25224 which includes fixes to properly handle tokens that appear after special tokens. | |
Make sure to also set `from_slow` to `True`. | |
A simple example: | |
- `legacy=True`: | |
```python | |
>>> from transformers import CognitivessTokenizerFast | |
>>> tokenizer = CognitivessTokenizerFast.from_pretrained("CognitivessAI/cognitivess", legacy=True, from_slow=True) | |
>>> tokenizer.encode("Hello <s>.") # 869 is '▁.' | |
[1, 15043, 29871, 1, 869] | |
``` | |
- `legacy=False`: | |
```python | |
>>> from transformers import CognitivessTokenizerFast | |
>>> tokenizer = CognitivessTokenizerFast.from_pretrained("CognitivessAI/cognitivess", legacy=False, from_slow=True) | |
>>> tokenizer.encode("Hello <s>.") # 29889 is '.' | |
[1, 15043, 29871, 1, 29889] | |
``` | |
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. | |
add_prefix_space (`bool`, *optional*): | |
Whether or not the tokenizer should automatically add a prefix space | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
slow_tokenizer_class = CognitivessTokenizer | |
padding_side = "left" | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file=None, | |
tokenizer_file=None, | |
clean_up_tokenization_spaces=False, | |
unk_token="<unk>", | |
bos_token="<s>", | |
eos_token="</s>", | |
add_bos_token=True, | |
add_eos_token=False, | |
use_default_system_prompt=False, | |
legacy=None, | |
add_prefix_space=None, | |
**kwargs, | |
): | |
if legacy is None: | |
logger.warning_once( | |
f"You are using the default legacy behaviour of the {self.__class__}. This is" | |
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." | |
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" | |
" means, and thoroughly read the reason why this was added as explained in" | |
" https://github.com/huggingface/transformers/pull/24565 - if you loaded a Cognitivess tokenizer from a GGUF file" | |
" you can ignore this message." | |
) | |
legacy = True | |
self.legacy = legacy | |
if add_prefix_space is not None: | |
kwargs["from_slow"] = True | |
super().__init__( | |
vocab_file=vocab_file, | |
tokenizer_file=tokenizer_file, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
unk_token=unk_token, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
add_bos_token=add_bos_token, | |
add_eos_token=add_eos_token, | |
use_default_system_prompt=use_default_system_prompt, | |
add_prefix_space=add_prefix_space, | |
legacy=legacy, | |
**kwargs, | |
) | |
self._add_bos_token = add_bos_token | |
self._add_eos_token = add_eos_token | |
self.update_post_processor() | |
self.use_default_system_prompt = use_default_system_prompt | |
self.vocab_file = vocab_file | |
def can_save_slow_tokenizer(self) -> bool: | |
return os.path.isfile(self.vocab_file) if self.vocab_file else False | |
def update_post_processor(self): | |
""" | |
Updates the underlying post processor with the current `bos_token` and `eos_token`. | |
""" | |
bos = self.bos_token | |
bos_token_id = self.bos_token_id | |
if bos is None and self.add_bos_token: | |
raise ValueError("add_bos_token = True but bos_token = None") | |
eos = self.eos_token | |
eos_token_id = self.eos_token_id | |
if eos is None and self.add_eos_token: | |
raise ValueError("add_eos_token = True but eos_token = None") | |
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" | |
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" | |
special_tokens = [] | |
if self.add_bos_token: | |
special_tokens.append((bos, bos_token_id)) | |
if self.add_eos_token: | |
special_tokens.append((eos, eos_token_id)) | |
self._tokenizer.post_processor = processors.TemplateProcessing( | |
single=single, pair=pair, special_tokens=special_tokens | |
) | |
def add_eos_token(self): | |
return self._add_eos_token | |
def add_bos_token(self): | |
return self._add_bos_token | |
def add_eos_token(self, value): | |
self._add_eos_token = value | |
self.update_post_processor() | |
def add_bos_token(self, value): | |
self._add_bos_token = value | |
self.update_post_processor() | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not self.can_save_slow_tokenizer: | |
raise ValueError( | |
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " | |
"tokenizer." | |
) | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
return (out_vocab_file,) | |
# Copied from transformers.models.Cognitivess.tokenization_Cognitivess.CognitivessTokenizer.default_chat_template | |
def default_chat_template(self): | |
""" | |
Cognitivess uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages. | |
Assistant messages do not have special tokens, because Cognitivess chat models are generally trained with strict | |
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering | |
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which | |
results in an unusual token ordering when it is present. This template should definitely be changed if you wish | |
to fine-tune a model with more flexible role ordering! | |
The output should look something like: | |
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos> | |
<bos>[INST] Prompt [/INST] | |
The reference for this chat template is [this code | |
snippet](https://github.com/facebookresearch/Cognitivess/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/Cognitivess/generation.py#L320-L362) | |
in the original repository. | |
""" | |
template = ( | |
"{% if messages[0]['role'] == 'system' %}" | |
"{% set loop_messages = messages[1:] %}" # Extract system message if it's present | |
"{% set system_message = messages[0]['content'] %}" | |
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}" | |
"{% set loop_messages = messages %}" # Or use the default system message if the flag is set | |
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" | |
"{% else %}" | |
"{% set loop_messages = messages %}" | |
"{% set system_message = false %}" | |
"{% endif %}" | |
"{% for message in loop_messages %}" # Loop over all non-system messages | |
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" | |
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" | |
"{% endif %}" | |
"{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message | |
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}" | |
"{% else %}" | |
"{% set content = message['content'] %}" | |
"{% endif %}" | |
"{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way | |
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" | |
"{% elif message['role'] == 'system' %}" | |
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}" | |
"{% elif message['role'] == 'assistant' %}" | |
"{{ ' ' + content.strip() + ' ' + eos_token }}" | |
"{% endif %}" | |
"{% endfor %}" | |
) | |
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") | |
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") | |
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) | |
return template | |
# TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers | |
# Copied from transformers.models.Cognitivess.tokenization_Cognitivess.CognitivessTokenizer.build_inputs_with_special_tokens | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | |
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | |
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
output = bos_token_id + token_ids_0 + eos_token_id | |
if token_ids_1 is not None: | |
output = output + bos_token_id + token_ids_1 + eos_token_id | |
return output |