|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Flax Cognitivess model.""" |
|
|
|
from functools import partial |
|
from typing import Optional, Tuple |
|
|
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze |
|
from flax.linen import combine_masks, make_causal_mask |
|
from flax.linen.attention import dot_product_attention_weights |
|
from flax.traverse_util import flatten_dict, unflatten_dict |
|
from jax import lax |
|
|
|
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput |
|
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring |
|
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging |
|
from .configuration_Cognitivess import CognitivessConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "CognitivessConfig" |
|
_CHECKPOINT_FOR_DOC = "afmck/testing-Cognitivess-tiny" |
|
_REAL_CHECKPOINT_FOR_DOC = "openlm-research/open_Cognitivess_3b_v2" |
|
|
|
Cognitivess_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a Flax Linen |
|
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a |
|
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. |
|
|
|
Finally, this model supports inherent JAX features such as: |
|
|
|
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) |
|
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) |
|
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) |
|
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) |
|
|
|
Parameters: |
|
config ([`CognitivessConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. |
|
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): |
|
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or |
|
`jax.numpy.bfloat16`. |
|
|
|
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If |
|
specified all the computation will be performed with the given `dtype`. |
|
|
|
**Note that this only specifies the dtype of the computation and does not influence the dtype of model |
|
parameters.** |
|
|
|
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and |
|
[`~FlaxPreTrainedModel.to_bf16`]. |
|
""" |
|
|
|
Cognitivess_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): |
|
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast |
|
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
def create_sinusoidal_positions(num_pos, dim): |
|
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) |
|
freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") |
|
|
|
emb = np.concatenate((freqs, freqs), axis=-1) |
|
out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1) |
|
return jnp.array(out[:, :, :num_pos]) |
|
|
|
|
|
def rotate_half(tensor): |
|
"""Rotates half the hidden dims of the input.""" |
|
rotate_half_tensor = jnp.concatenate( |
|
(-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]), axis=-1 |
|
) |
|
return rotate_half_tensor |
|
|
|
|
|
def apply_rotary_pos_emb(tensor, sin_pos, cos_pos): |
|
return (tensor * cos_pos) + (rotate_half(tensor) * sin_pos) |
|
|
|
|
|
class FlaxCognitivessRMSNorm(nn.Module): |
|
config: CognitivessConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.epsilon = self.config.rms_norm_eps |
|
self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size) |
|
|
|
def __call__(self, hidden_states): |
|
variance = jnp.asarray(hidden_states, dtype=jnp.float32) |
|
variance = jnp.power(variance, 2) |
|
variance = variance.mean(-1, keepdims=True) |
|
|
|
hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon) |
|
|
|
return self.weight * jnp.asarray(hidden_states, dtype=self.dtype) |
|
|
|
|
|
class FlaxCognitivessRotaryEmbedding(nn.Module): |
|
config: CognitivessConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
head_dim = self.config.hidden_size // self.config.num_attention_heads |
|
self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim) |
|
|
|
def __call__(self, key, query, position_ids): |
|
sincos = self.sincos[position_ids] |
|
sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1) |
|
|
|
key = apply_rotary_pos_emb(key, sin_pos, cos_pos) |
|
query = apply_rotary_pos_emb(query, sin_pos, cos_pos) |
|
|
|
key = jnp.asarray(key, dtype=self.dtype) |
|
query = jnp.asarray(query, dtype=self.dtype) |
|
|
|
return key, query |
|
|
|
|
|
class FlaxCognitivessAttention(nn.Module): |
|
config: CognitivessConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
causal: bool = True |
|
is_cross_attention: bool = False |
|
|
|
def setup(self): |
|
config = self.config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32 |
|
|
|
dense = partial( |
|
nn.Dense, |
|
use_bias=config.attention_bias, |
|
dtype=self.dtype, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
) |
|
|
|
self.q_proj = dense(self.num_heads * self.head_dim) |
|
self.k_proj = dense(self.num_key_value_heads * self.head_dim) |
|
self.v_proj = dense(self.num_key_value_heads * self.head_dim) |
|
self.o_proj = dense(self.embed_dim) |
|
if (self.head_dim * self.num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.embed_dim}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool") |
|
self.rotary_emb = FlaxCognitivessRotaryEmbedding(config, dtype=self.dtype) |
|
|
|
def _split_heads(self, hidden_states, num_heads): |
|
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) |
|
|
|
def _merge_heads(self, hidden_states): |
|
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) |
|
|
|
@nn.compact |
|
|
|
def _concatenate_to_cache(self, key, value, query, attention_mask): |
|
""" |
|
This function takes projected key, value states from a single input token and concatenates the states to cached |
|
states from previous steps. This function is slighly adapted from the official Flax repository: |
|
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 |
|
""" |
|
|
|
is_initialized = self.has_variable("cache", "cached_key") |
|
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) |
|
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) |
|
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) |
|
|
|
if is_initialized: |
|
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape |
|
|
|
cur_index = cache_index.value |
|
indices = (0,) * len(batch_dims) + (cur_index, 0, 0) |
|
key = lax.dynamic_update_slice(cached_key.value, key, indices) |
|
value = lax.dynamic_update_slice(cached_value.value, value, indices) |
|
cached_key.value = key |
|
cached_value.value = value |
|
num_updated_cache_vectors = query.shape[1] |
|
cache_index.value = cache_index.value + num_updated_cache_vectors |
|
|
|
pad_mask = jnp.broadcast_to( |
|
jnp.arange(max_length) < cur_index + num_updated_cache_vectors, |
|
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), |
|
) |
|
attention_mask = combine_masks(pad_mask, attention_mask) |
|
return key, value, attention_mask |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
deterministic: bool = True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
query = self.q_proj(hidden_states) |
|
key = self.k_proj(hidden_states) |
|
value = self.v_proj(hidden_states) |
|
|
|
query = self._split_heads(query, self.num_heads) |
|
key = self._split_heads(key, self.num_key_value_heads) |
|
value = self._split_heads(value, self.num_key_value_heads) |
|
|
|
key, query = self.rotary_emb(key, query, position_ids) |
|
|
|
query_length, key_length = query.shape[1], key.shape[1] |
|
|
|
if self.has_variable("cache", "cached_key"): |
|
mask_shift = self.variables["cache"]["cache_index"] |
|
max_decoder_length = self.variables["cache"]["cached_key"].shape[1] |
|
causal_mask = lax.dynamic_slice( |
|
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) |
|
) |
|
else: |
|
causal_mask = self.causal_mask[:, :, :query_length, :key_length] |
|
|
|
batch_size = hidden_states.shape[0] |
|
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) |
|
|
|
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) |
|
attention_mask = combine_masks(attention_mask, causal_mask) |
|
|
|
dropout_rng = None |
|
if not deterministic and self.config.attention_dropout > 0.0: |
|
dropout_rng = self.make_rng("dropout") |
|
|
|
|
|
|
|
if self.has_variable("cache", "cached_key") or init_cache: |
|
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) |
|
|
|
key = jnp.repeat(key, self.num_key_value_groups, axis=2) |
|
value = jnp.repeat(value, self.num_key_value_groups, axis=2) |
|
|
|
|
|
attention_bias = lax.select( |
|
attention_mask > 0, |
|
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), |
|
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), |
|
) |
|
|
|
|
|
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype |
|
attn_weights = dot_product_attention_weights( |
|
query, |
|
key, |
|
bias=attention_bias, |
|
dropout_rng=dropout_rng, |
|
dropout_rate=self.config.attention_dropout, |
|
deterministic=deterministic, |
|
dtype=attention_dtype, |
|
) |
|
|
|
if self.attention_softmax_in_fp32: |
|
attn_weights = attn_weights.astype(self.dtype) |
|
|
|
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) |
|
attn_output = self._merge_heads(attn_output) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) |
|
return outputs |
|
|
|
|
|
class FlaxCognitivessMLP(nn.Module): |
|
config: CognitivessConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
embed_dim = self.config.hidden_size |
|
inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim |
|
|
|
kernel_init = jax.nn.initializers.normal(self.config.initializer_range) |
|
self.act = ACT2FN[self.config.hidden_act] |
|
|
|
self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) |
|
self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) |
|
self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) |
|
|
|
def __call__(self, hidden_states): |
|
up_proj_states = self.up_proj(hidden_states) |
|
gate_states = self.act(self.gate_proj(hidden_states)) |
|
|
|
hidden_states = self.down_proj(up_proj_states * gate_states) |
|
return hidden_states |
|
|
|
|
|
class FlaxCognitivessDecoderLayer(nn.Module): |
|
config: CognitivessConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.input_layernorm = FlaxCognitivessRMSNorm(self.config, dtype=self.dtype) |
|
self.self_attn = FlaxCognitivessAttention(self.config, dtype=self.dtype) |
|
self.post_attention_layernorm = FlaxCognitivessRMSNorm(self.config, dtype=self.dtype) |
|
self.mlp = FlaxCognitivessMLP(self.config, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_ids=None, |
|
deterministic: bool = True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
outputs = self.self_attn( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
deterministic=deterministic, |
|
init_cache=init_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
attn_output = outputs[0] |
|
hidden_states = residual + attn_output |
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = residual + hidden_states |
|
|
|
return (hidden_states,) + outputs[1:] |
|
|
|
|
|
|
|
class FlaxCognitivessPreTrainedModel(FlaxPreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = CognitivessConfig |
|
base_model_prefix = "model" |
|
module_class: nn.Module = None |
|
|
|
def __init__( |
|
self, |
|
config: CognitivessConfig, |
|
input_shape: Tuple = (1, 1), |
|
seed: int = 0, |
|
dtype: jnp.dtype = jnp.float32, |
|
_do_init: bool = True, |
|
**kwargs, |
|
): |
|
module = self.module_class(config=config, dtype=dtype, **kwargs) |
|
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) |
|
|
|
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: |
|
|
|
input_ids = jnp.zeros(input_shape, dtype="i4") |
|
attention_mask = jnp.ones_like(input_ids) |
|
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) |
|
params_rng, dropout_rng = jax.random.split(rng) |
|
rngs = {"params": params_rng, "dropout": dropout_rng} |
|
|
|
random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"] |
|
|
|
if params is not None: |
|
random_params = flatten_dict(unfreeze(random_params)) |
|
params = flatten_dict(unfreeze(params)) |
|
for missing_key in self._missing_keys: |
|
params[missing_key] = random_params[missing_key] |
|
self._missing_keys = set() |
|
return freeze(unflatten_dict(params)) |
|
else: |
|
return random_params |
|
|
|
def init_cache(self, batch_size, max_length): |
|
r""" |
|
Args: |
|
batch_size (`int`): |
|
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. |
|
max_length (`int`): |
|
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized |
|
cache. |
|
""" |
|
|
|
input_ids = jnp.ones((batch_size, max_length)) |
|
attention_mask = jnp.ones_like(input_ids) |
|
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) |
|
|
|
init_variables = self.module.init( |
|
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True |
|
) |
|
return unfreeze(init_variables["cache"]) |
|
|
|
@add_start_docstrings_to_model_forward(Cognitivess_INPUTS_DOCSTRING) |
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
position_ids=None, |
|
params: dict = None, |
|
past_key_values: dict = None, |
|
dropout_rng: jax.random.PRNGKey = None, |
|
train: bool = False, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
|
|
batch_size, sequence_length = input_ids.shape |
|
|
|
if position_ids is None: |
|
if past_key_values is not None: |
|
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") |
|
|
|
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) |
|
|
|
if attention_mask is None: |
|
attention_mask = jnp.ones((batch_size, sequence_length)) |
|
|
|
|
|
rngs = {} |
|
if dropout_rng is not None: |
|
rngs["dropout"] = dropout_rng |
|
|
|
inputs = {"params": params or self.params} |
|
|
|
|
|
if past_key_values: |
|
inputs["cache"] = past_key_values |
|
mutable = ["cache"] |
|
else: |
|
mutable = False |
|
|
|
outputs = self.module.apply( |
|
inputs, |
|
jnp.array(input_ids, dtype="i4"), |
|
jnp.array(attention_mask, dtype="i4"), |
|
jnp.array(position_ids, dtype="i4"), |
|
not train, |
|
False, |
|
output_attentions, |
|
output_hidden_states, |
|
return_dict, |
|
rngs=rngs, |
|
mutable=mutable, |
|
) |
|
|
|
|
|
if past_key_values is not None and return_dict: |
|
outputs, past_key_values = outputs |
|
outputs["past_key_values"] = unfreeze(past_key_values["cache"]) |
|
return outputs |
|
elif past_key_values is not None and not return_dict: |
|
outputs, past_key_values = outputs |
|
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class FlaxCognitivessLayerCollection(nn.Module): |
|
config: CognitivessConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.blocks = [ |
|
FlaxCognitivessDecoderLayer(self.config, dtype=self.dtype, name=str(i)) |
|
for i in range(self.config.num_hidden_layers) |
|
] |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_ids=None, |
|
deterministic: bool = True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = False, |
|
): |
|
all_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
for block in self.blocks: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
layer_outputs = block( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
deterministic=deterministic, |
|
init_cache=init_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions += (layer_outputs[1],) |
|
|
|
|
|
outputs = (hidden_states, all_hidden_states, all_attentions) |
|
|
|
return outputs |
|
|
|
|
|
class FlaxCognitivessModule(nn.Module): |
|
config: CognitivessConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.hidden_size = self.config.hidden_size |
|
embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range) |
|
self.embed_tokens = nn.Embed( |
|
self.config.vocab_size, |
|
self.hidden_size, |
|
embedding_init=embedding_init, |
|
dtype=self.dtype, |
|
) |
|
self.layers = FlaxCognitivessLayerCollection(self.config, dtype=self.dtype) |
|
self.norm = FlaxCognitivessRMSNorm(self.config, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
position_ids=None, |
|
deterministic=True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
input_embeds = self.embed_tokens(input_ids.astype("i4")) |
|
|
|
outputs = self.layers( |
|
input_embeds, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
deterministic=deterministic, |
|
init_cache=init_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
hidden_states = self.norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = outputs[1] + (hidden_states,) |
|
outputs = (hidden_states, all_hidden_states) + outputs[2:] |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
if not return_dict: |
|
return tuple(v for v in outputs if v is not None) |
|
|
|
return FlaxBaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=outputs[1], |
|
attentions=outputs[-1], |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Cognitivess Model transformer outputting raw hidden-states without any specific head on top.", |
|
Cognitivess_START_DOCSTRING, |
|
) |
|
class FlaxCognitivessModel(FlaxCognitivessPreTrainedModel): |
|
module_class = FlaxCognitivessModule |
|
|
|
|
|
append_call_sample_docstring( |
|
FlaxCognitivessModel, |
|
_CHECKPOINT_FOR_DOC, |
|
FlaxBaseModelOutput, |
|
_CONFIG_FOR_DOC, |
|
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, |
|
) |
|
|
|
|
|
class FlaxCognitivessForCausalLMModule(nn.Module): |
|
config: CognitivessConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.model = FlaxCognitivessModule(self.config, dtype=self.dtype) |
|
self.lm_head = nn.Dense( |
|
self.config.vocab_size, |
|
use_bias=False, |
|
dtype=self.dtype, |
|
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), |
|
) |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
position_ids=None, |
|
deterministic: bool = True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
outputs = self.model( |
|
input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
deterministic=deterministic, |
|
init_cache=init_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
if not return_dict: |
|
return (lm_logits,) + outputs[1:] |
|
|
|
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Cognitivess Model transformer with a language modeling head (linear layer) on top. |
|
""", |
|
Cognitivess_START_DOCSTRING, |
|
) |
|
|
|
class FlaxCognitivessForCausalLM(FlaxCognitivessPreTrainedModel): |
|
module_class = FlaxCognitivessForCausalLMModule |
|
|
|
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): |
|
|
|
batch_size, seq_length = input_ids.shape |
|
|
|
past_key_values = self.init_cache(batch_size, max_length) |
|
|
|
|
|
|
|
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") |
|
if attention_mask is not None: |
|
position_ids = attention_mask.cumsum(axis=-1) - 1 |
|
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) |
|
else: |
|
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) |
|
|
|
return { |
|
"past_key_values": past_key_values, |
|
"attention_mask": extended_attention_mask, |
|
"position_ids": position_ids, |
|
} |
|
|
|
def update_inputs_for_generation(self, model_outputs, model_kwargs): |
|
model_kwargs["past_key_values"] = model_outputs.past_key_values |
|
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 |
|
return model_kwargs |
|
|
|
|
|
append_call_sample_docstring( |
|
FlaxCognitivessForCausalLM, |
|
_CHECKPOINT_FOR_DOC, |
|
FlaxCausalLMOutput, |
|
_CONFIG_FOR_DOC, |
|
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, |
|
) |