|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.modeling_outputs import ( |
|
CausalLMOutputWithCrossAttentions, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
QuestionAnsweringModelOutput, |
|
) |
|
from transformers import LlamaModel, LlamaPreTrainedModel |
|
from .configuration_cognitivess import CognitivessConfig |
|
|
|
class CognitivessModel(LlamaModel): |
|
config_class = CognitivessConfig |
|
|
|
class CognitivessForCausalLM(LlamaPreTrainedModel): |
|
config_class = CognitivessConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = CognitivessModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
|
|
class CognitivessForSequenceClassification(LlamaPreTrainedModel): |
|
config_class = CognitivessConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = CognitivessModel(config) |
|
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) |
|
|
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.score(hidden_states[:, 0, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.num_labels == 1: |
|
loss_fct = nn.MSELoss() |
|
loss = loss_fct(logits.view(-1), labels.view(-1)) |
|
else: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
class CognitivessForTokenClassification(LlamaPreTrainedModel): |
|
config_class = CognitivessConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = CognitivessModel(config) |
|
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) |
|
|
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
class CognitivessForQuestionAnswering(LlamaPreTrainedModel): |
|
config_class = CognitivessConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = CognitivessModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
start_positions=None, |
|
end_positions=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
loss = None |
|
if start_positions is not None and end_positions is not None: |
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
ignored_index = start_logits.size(1) |
|
start_positions.clamp_(0, ignored_index) |
|
end_positions.clamp_(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|