cognitivess commited on
Commit
2fd97cf
1 Parent(s): e942e2b

Rename cognitivess_model/tokenization_Cognitivess.py to cognitivess_model/tokenization_cognitivess.py

Browse files
cognitivess_model/tokenization_Cognitivess.py DELETED
@@ -1,462 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 Cognitivess and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """Tokenization classes for Cognitivess."""
17
-
18
- import os
19
- from shutil import copyfile
20
- from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
21
-
22
- import sentencepiece as spm
23
-
24
- from ...convert_slow_tokenizer import import_protobuf
25
- from ...tokenization_utils import AddedToken, PreTrainedTokenizer
26
- from ...utils import logging
27
-
28
-
29
- if TYPE_CHECKING:
30
- from ...tokenization_utils_base import TextInput
31
-
32
- logger = logging.get_logger(__name__)
33
-
34
- VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
35
-
36
- SPIECE_UNDERLINE = "▁"
37
-
38
- B_INST, E_INST = "[INST]", "[/INST]"
39
- B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
40
-
41
- # fmt: off
42
- DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
43
- answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
44
- that your responses are socially unbiased and positive in nature.
45
-
46
- If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
47
- correct. If you don't know the answer to a question, please don't share false information."""
48
- # fmt: on
49
-
50
-
51
- class CognitivessTokenizer(PreTrainedTokenizer):
52
- """
53
- Construct a Cognitivess tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
54
- no padding token in the original model.
55
-
56
- Args:
57
- vocab_file (`str`):
58
- Path to the vocabulary file.
59
- unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
60
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
61
- token instead.
62
- bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
63
- The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
64
- eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
65
- The end of sequence token.
66
- pad_token (`str` or `tokenizers.AddedToken`, *optional*):
67
- A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
68
- attention mechanisms or loss computation.
69
- sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
70
- Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
71
- SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
72
- to set:
73
-
74
- - `enable_sampling`: Enable subword regularization.
75
- - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
76
-
77
- - `nbest_size = {0,1}`: No sampling is performed.
78
- - `nbest_size > 1`: samples from the nbest_size results.
79
- - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
80
- using forward-filtering-and-backward-sampling algorithm.
81
-
82
- - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
83
- BPE-dropout.
84
-
85
- add_bos_token (`bool`, *optional*, defaults to `True`):
86
- Whether or not to add an `bos_token` at the start of sequences.
87
- add_eos_token (`bool`, *optional*, defaults to `False`):
88
- Whether or not to add an `eos_token` at the end of sequences.
89
- clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
90
- Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
91
- extra spaces.
92
- use_default_system_prompt (`bool`, *optional*, defaults to `False`):
93
- Whether or not the default system prompt for Cognitivess should be used.
94
- spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
95
- Whether or not to add spaces between special tokens.
96
- legacy (`bool`, *optional*):
97
- Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
98
- and #25224 which includes fixes to properly handle tokens that appear after special tokens.
99
- Make sure to also set `from_slow` to `True`.
100
- A simple example:
101
-
102
- - `legacy=True`:
103
- ```python
104
- >>> from transformers import CognitivessTokenizerFast
105
-
106
- >>> tokenizer = CognitivessTokenizerFast.from_pretrained("CognitivessAI/cognitivess", legacy=True, from_slow=True)
107
- >>> tokenizer.encode("Hello <s>.") # 869 is '▁.'
108
- [1, 15043, 29871, 1, 869]
109
- ```
110
- - `legacy=False`:
111
- ```python
112
- >>> from transformers import CognitivessTokenizerFast
113
-
114
- >>> tokenizer = CognitivessTokenizerFast.from_pretrained("CognitivessAI/cognitivess", legacy=False, from_slow=True)
115
- >>> tokenizer.encode("Hello <s>.") # 29889 is '.'
116
- [1, 15043, 29871, 1, 29889]
117
- ```
118
- Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
119
- add_prefix_space (`bool`, *optional*, defaults to `True`):
120
- Whether or not to add an initial space to the input. This allows to treat the leading word just as any
121
- other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
122
- """
123
-
124
- vocab_files_names = VOCAB_FILES_NAMES
125
- model_input_names = ["input_ids", "attention_mask"]
126
-
127
- def __init__(
128
- self,
129
- vocab_file,
130
- unk_token="<unk>",
131
- bos_token="<s>",
132
- eos_token="</s>",
133
- pad_token=None,
134
- sp_model_kwargs: Optional[Dict[str, Any]] = None,
135
- add_bos_token=True,
136
- add_eos_token=False,
137
- clean_up_tokenization_spaces=False,
138
- use_default_system_prompt=False,
139
- spaces_between_special_tokens=False,
140
- legacy=None,
141
- add_prefix_space=True,
142
- **kwargs,
143
- ):
144
- self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
145
- bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
146
- eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
147
- unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
148
- pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
149
-
150
- if legacy is None:
151
- logger.warning_once(
152
- f"You are using the default legacy behaviour of the {self.__class__}. This is"
153
- " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
154
- " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
155
- " means, and thoroughly read the reason why this was added as explained in"
156
- " https://github.com/huggingface/transformers/pull/24565 - if you loaded a Cognitivess tokenizer from a GGUF file"
157
- " you can ignore this message"
158
- )
159
- legacy = True
160
-
161
- self.legacy = legacy
162
- self.vocab_file = vocab_file
163
- self.add_bos_token = add_bos_token
164
- self.add_eos_token = add_eos_token
165
- self.use_default_system_prompt = use_default_system_prompt
166
- self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
167
- self.add_prefix_space = add_prefix_space
168
-
169
- super().__init__(
170
- bos_token=bos_token,
171
- eos_token=eos_token,
172
- unk_token=unk_token,
173
- pad_token=pad_token,
174
- add_bos_token=add_bos_token,
175
- add_eos_token=add_eos_token,
176
- sp_model_kwargs=self.sp_model_kwargs,
177
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
178
- use_default_system_prompt=use_default_system_prompt,
179
- spaces_between_special_tokens=spaces_between_special_tokens,
180
- legacy=legacy,
181
- add_prefix_space=add_prefix_space,
182
- **kwargs,
183
- )
184
-
185
- @property
186
- def unk_token_length(self):
187
- return len(self.sp_model.encode(str(self.unk_token)))
188
-
189
- # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
190
- def get_spm_processor(self, from_slow=False):
191
- tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
192
- if self.legacy or from_slow: # no dependency on protobuf
193
- tokenizer.Load(self.vocab_file)
194
- return tokenizer
195
-
196
- with open(self.vocab_file, "rb") as f:
197
- sp_model = f.read()
198
- model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
199
- model = model_pb2.ModelProto.FromString(sp_model)
200
- normalizer_spec = model_pb2.NormalizerSpec()
201
- normalizer_spec.add_dummy_prefix = False
202
- model.normalizer_spec.MergeFrom(normalizer_spec)
203
- sp_model = model.SerializeToString()
204
- tokenizer.LoadFromSerializedProto(sp_model)
205
- return tokenizer
206
-
207
- def __getstate__(self):
208
- state = self.__dict__.copy()
209
- state["sp_model"] = None
210
- state["sp_model_proto"] = self.sp_model.serialized_model_proto()
211
- return state
212
-
213
- def __setstate__(self, d):
214
- self.__dict__ = d
215
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
216
- self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
217
-
218
- @property
219
- def vocab_size(self):
220
- """Returns vocab size"""
221
- return self.sp_model.get_piece_size()
222
-
223
- def get_vocab(self):
224
- """Returns vocab as a dict"""
225
- vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
226
- vocab.update(self.added_tokens_encoder)
227
- return vocab
228
-
229
- # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
230
- def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
231
- """
232
- Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
233
- first token is special.
234
- """
235
- if self.legacy or len(text) == 0:
236
- return super().tokenize(text, **kwargs)
237
-
238
- text = text.replace(SPIECE_UNDERLINE, " ")
239
- if self.add_prefix_space:
240
- text = SPIECE_UNDERLINE + text
241
-
242
- tokens = super().tokenize(text, **kwargs)
243
-
244
- if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
245
- tokens = tokens[1:]
246
- return tokens
247
-
248
- # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
249
- def _tokenize(self, text, **kwargs):
250
- """
251
- Returns a tokenized string.
252
-
253
- We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
254
- SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
255
- `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
256
- `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
257
- `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
258
- """
259
- tokens = self.sp_model.encode(text, out_type=str)
260
- if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
261
- return tokens
262
-
263
- # 1. Encode string + prefix ex: "<unk> Hey"
264
- tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
265
- # 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
266
- return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
267
-
268
- def _convert_token_to_id(self, token):
269
- """Converts a token (str) in an id using the vocab."""
270
- return self.sp_model.piece_to_id(token)
271
-
272
- def _convert_id_to_token(self, index):
273
- """Converts an index (integer) in a token (str) using the vocab."""
274
- token = self.sp_model.IdToPiece(index)
275
- return token
276
-
277
- def convert_tokens_to_string(self, tokens):
278
- """Converts a sequence of tokens (string) in a single string."""
279
- # since we manually add the prefix space, we have to remove it when decoding
280
- if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
281
- tokens[0] = tokens[0][1:]
282
-
283
- current_sub_tokens = []
284
- out_string = ""
285
- prev_is_special = False
286
- for i, token in enumerate(tokens):
287
- # make sure that special tokens are not decoded using sentencepiece model
288
- if token in self.all_special_tokens:
289
- if not prev_is_special and i != 0 and self.legacy:
290
- out_string += " "
291
- out_string += self.sp_model.decode(current_sub_tokens) + token
292
- prev_is_special = True
293
- current_sub_tokens = []
294
- else:
295
- if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE):
296
- out_string += " "
297
- current_sub_tokens.append(token)
298
- prev_is_special = False
299
- out_string += self.sp_model.decode(current_sub_tokens)
300
- return out_string
301
-
302
- def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
303
- """
304
- Save the vocabulary and special tokens file to a directory.
305
-
306
- Args:
307
- save_directory (`str`):
308
- The directory in which to save the vocabulary.
309
-
310
- Returns:
311
- `Tuple(str)`: Paths to the files saved.
312
- """
313
- if not os.path.isdir(save_directory):
314
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
315
- return
316
- out_vocab_file = os.path.join(
317
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
318
- )
319
-
320
- if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
321
- copyfile(self.vocab_file, out_vocab_file)
322
- elif not os.path.isfile(self.vocab_file):
323
- with open(out_vocab_file, "wb") as fi:
324
- content_spiece_model = self.sp_model.serialized_model_proto()
325
- fi.write(content_spiece_model)
326
-
327
- return (out_vocab_file,)
328
-
329
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
330
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
331
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
332
-
333
- output = bos_token_id + token_ids_0 + eos_token_id
334
-
335
- if token_ids_1 is not None:
336
- output = output + bos_token_id + token_ids_1 + eos_token_id
337
-
338
- return output
339
-
340
- def get_special_tokens_mask(
341
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
342
- ) -> List[int]:
343
- """
344
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
345
- special tokens using the tokenizer `prepare_for_model` method.
346
-
347
- Args:
348
- token_ids_0 (`List[int]`):
349
- List of IDs.
350
- token_ids_1 (`List[int]`, *optional*):
351
- Optional second list of IDs for sequence pairs.
352
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
353
- Whether or not the token list is already formatted with special tokens for the model.
354
-
355
- Returns:
356
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
357
- """
358
- if already_has_special_tokens:
359
- return super().get_special_tokens_mask(
360
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
361
- )
362
-
363
- bos_token_id = [1] if self.add_bos_token else []
364
- eos_token_id = [1] if self.add_eos_token else []
365
-
366
- if token_ids_1 is None:
367
- return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
368
- return (
369
- bos_token_id
370
- + ([0] * len(token_ids_0))
371
- + eos_token_id
372
- + bos_token_id
373
- + ([0] * len(token_ids_1))
374
- + eos_token_id
375
- )
376
-
377
- def create_token_type_ids_from_sequences(
378
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
379
- ) -> List[int]:
380
- """
381
- Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
382
- sequence pair mask has the following format:
383
-
384
- ```
385
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
386
- | first sequence | second sequence |
387
- ```
388
-
389
- if token_ids_1 is None, only returns the first portion of the mask (0s).
390
-
391
- Args:
392
- token_ids_0 (`List[int]`):
393
- List of ids.
394
- token_ids_1 (`List[int]`, *optional*):
395
- Optional second list of IDs for sequence pairs.
396
-
397
- Returns:
398
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
399
- """
400
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
401
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
402
-
403
- output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
404
-
405
- if token_ids_1 is not None:
406
- output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
407
-
408
- return output
409
-
410
- @property
411
- def default_chat_template(self):
412
- """
413
- Cognitivess uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages.
414
- Assistant messages do not have special tokens, because Cognitivess chat models are generally trained with strict
415
- user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
416
- rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
417
- results in an unusual token ordering when it is present. This template should definitely be changed if you wish
418
- to fine-tune a model with more flexible role ordering!
419
-
420
- The output should look something like:
421
-
422
- <bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos>
423
- <bos>[INST] Prompt [/INST]
424
-
425
- The reference for this chat template is [this code
426
- snippet](https://github.com/facebookresearch/Cognitivess/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/Cognitivess/generation.py#L320-L362)
427
- in the original repository.
428
- """
429
- template = (
430
- "{% if messages[0]['role'] == 'system' %}"
431
- "{% set loop_messages = messages[1:] %}" # Extract system message if it's present
432
- "{% set system_message = messages[0]['content'] %}"
433
- "{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}"
434
- "{% set loop_messages = messages %}" # Or use the default system message if the flag is set
435
- "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
436
- "{% else %}"
437
- "{% set loop_messages = messages %}"
438
- "{% set system_message = false %}"
439
- "{% endif %}"
440
- "{% for message in loop_messages %}" # Loop over all non-system messages
441
- "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
442
- "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
443
- "{% endif %}"
444
- "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
445
- "{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}"
446
- "{% else %}"
447
- "{% set content = message['content'] %}"
448
- "{% endif %}"
449
- "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way
450
- "{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
451
- "{% elif message['role'] == 'system' %}"
452
- "{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}"
453
- "{% elif message['role'] == 'assistant' %}"
454
- "{{ ' ' + content.strip() + ' ' + eos_token }}"
455
- "{% endif %}"
456
- "{% endfor %}"
457
- )
458
- template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
459
- default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
460
- template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
461
-
462
- return template
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cognitivess_model/tokenization_cognitivess.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PreTrainedTokenizer
2
+
3
+ class CognitivessTokenizer(PreTrainedTokenizer):
4
+ def __init__(self, *args, **kwargs):
5
+ super().__init__(*args, **kwargs)
6
+
7
+ @property
8
+ def vocab_size(self):
9
+ return len(self.encoder)
10
+
11
+ def get_vocab(self):
12
+ return dict(self.encoder)
13
+
14
+ def _tokenize(self, text):
15
+ return text.split()
16
+
17
+ def _convert_token_to_id(self, token):
18
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
19
+
20
+ def _convert_id_to_token(self, index):
21
+ return self.decoder.get(index, self.unk_token)
22
+
23
+ def convert_tokens_to_string(self, tokens):
24
+ return " ".join(tokens)
25
+
26
+ def save_vocabulary(self, save_directory):
27
+ vocab_file = os.path.join(save_directory, "vocab.json")
28
+ with open(vocab_file, "w", encoding="utf-8") as f:
29
+ json.dump(self.encoder, f, ensure_ascii=False)
30
+ return (vocab_file,)
31
+
32
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
33
+ bos_token_id = [self.bos_token_id]
34
+ eos_token_id = [self.eos_token_id]
35
+ return bos_token_id + token_ids_0 + eos_token_id