cognitivess
commited on
Commit
•
5336c3e
1
Parent(s):
189915a
Update cognitivess_model/modeling_Cognitivess.py
Browse files
cognitivess_model/modeling_Cognitivess.py
CHANGED
@@ -1,10 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
-
#
|
4 |
-
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
-
# and OPT implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
@@ -17,30 +12,31 @@
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
-
"""PyTorch Cognitivess model."""
|
21 |
-
|
22 |
import math
|
23 |
from typing import List, Optional, Tuple, Union
|
24 |
|
25 |
import torch
|
|
|
26 |
import torch.utils.checkpoint
|
27 |
from torch import nn
|
28 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
|
30 |
from ...activations import ACT2FN
|
31 |
-
from ...cache_utils import Cache, DynamicCache,
|
32 |
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
|
|
33 |
from ...modeling_outputs import (
|
34 |
BaseModelOutputWithPast,
|
35 |
CausalLMOutputWithPast,
|
|
|
36 |
SequenceClassifierOutputWithPast,
|
37 |
TokenClassifierOutput,
|
38 |
)
|
39 |
from ...modeling_utils import PreTrainedModel
|
|
|
40 |
from ...utils import (
|
41 |
add_start_docstrings,
|
42 |
add_start_docstrings_to_model_forward,
|
43 |
-
is_flash_attn_2_available,
|
44 |
is_flash_attn_greater_or_equal_2_10,
|
45 |
logging,
|
46 |
replace_return_docstrings,
|
@@ -48,15 +44,11 @@ from ...utils import (
|
|
48 |
from .configuration_Cognitivess import CognitivessConfig
|
49 |
|
50 |
|
51 |
-
if is_flash_attn_2_available():
|
52 |
-
from ...modeling_flash_attention_utils import _flash_attention_forward
|
53 |
-
|
54 |
logger = logging.get_logger(__name__)
|
55 |
|
56 |
_CONFIG_FOR_DOC = "CognitivessConfig"
|
57 |
|
58 |
|
59 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Cognitivess
|
60 |
class CognitivessRMSNorm(nn.Module):
|
61 |
def __init__(self, hidden_size, eps=1e-6):
|
62 |
"""
|
@@ -74,18 +66,22 @@ class CognitivessRMSNorm(nn.Module):
|
|
74 |
return self.weight * hidden_states.to(input_dtype)
|
75 |
|
76 |
|
|
|
|
|
|
|
77 |
class CognitivessRotaryEmbedding(nn.Module):
|
78 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
79 |
super().__init__()
|
80 |
-
|
81 |
self.dim = dim
|
82 |
self.max_position_embeddings = max_position_embeddings
|
83 |
self.base = base
|
84 |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
85 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
|
86 |
|
87 |
@torch.no_grad()
|
88 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward
|
89 |
def forward(self, x, position_ids):
|
90 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
91 |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
@@ -102,7 +98,35 @@ class CognitivessRotaryEmbedding(nn.Module):
|
|
102 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
103 |
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def rotate_half(x):
|
107 |
"""Rotates half the hidden dims of the input."""
|
108 |
x1 = x[..., : x.shape[-1] // 2]
|
@@ -110,7 +134,6 @@ def rotate_half(x):
|
|
110 |
return torch.cat((-x2, x1), dim=-1)
|
111 |
|
112 |
|
113 |
-
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
114 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
115 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
116 |
|
@@ -141,18 +164,37 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
141 |
class CognitivessMLP(nn.Module):
|
142 |
def __init__(self, config):
|
143 |
super().__init__()
|
|
|
144 |
self.hidden_size = config.hidden_size
|
145 |
self.intermediate_size = config.intermediate_size
|
146 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=
|
147 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=
|
148 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=
|
149 |
self.act_fn = ACT2FN[config.hidden_act]
|
150 |
|
151 |
-
def forward(self,
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
|
155 |
-
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
156 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
157 |
"""
|
158 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
@@ -166,10 +208,7 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
166 |
|
167 |
|
168 |
class CognitivessAttention(nn.Module):
|
169 |
-
"""
|
170 |
-
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
171 |
-
and "Generating Long Sequences with Sparse Transformers".
|
172 |
-
"""
|
173 |
|
174 |
def __init__(self, config: CognitivessConfig, layer_idx: Optional[int] = None):
|
175 |
super().__init__()
|
@@ -185,23 +224,51 @@ class CognitivessAttention(nn.Module):
|
|
185 |
self.attention_dropout = config.attention_dropout
|
186 |
self.hidden_size = config.hidden_size
|
187 |
self.num_heads = config.num_attention_heads
|
188 |
-
self.head_dim =
|
189 |
self.num_key_value_heads = config.num_key_value_heads
|
190 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
191 |
self.max_position_embeddings = config.max_position_embeddings
|
192 |
self.rope_theta = config.rope_theta
|
193 |
self.is_causal = True
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
199 |
|
200 |
-
self.
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
def forward(
|
207 |
self,
|
@@ -212,12 +279,31 @@ class CognitivessAttention(nn.Module):
|
|
212 |
output_attentions: bool = False,
|
213 |
use_cache: bool = False,
|
214 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
215 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
216 |
bsz, q_len, _ = hidden_states.size()
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
223 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
@@ -253,8 +339,14 @@ class CognitivessAttention(nn.Module):
|
|
253 |
|
254 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
255 |
|
256 |
-
attn_output = attn_output.
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
if not output_attentions:
|
260 |
attn_weights = None
|
@@ -269,7 +361,6 @@ class CognitivessFlashAttention2(CognitivessAttention):
|
|
269 |
flash attention and deal with padding tokens in case the input contains any of them.
|
270 |
"""
|
271 |
|
272 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
273 |
def __init__(self, *args, **kwargs):
|
274 |
super().__init__(*args, **kwargs)
|
275 |
|
@@ -281,13 +372,13 @@ class CognitivessFlashAttention2(CognitivessAttention):
|
|
281 |
def forward(
|
282 |
self,
|
283 |
hidden_states: torch.Tensor,
|
284 |
-
attention_mask: Optional[torch.
|
285 |
position_ids: Optional[torch.LongTensor] = None,
|
286 |
past_key_value: Optional[Cache] = None,
|
287 |
output_attentions: bool = False,
|
288 |
use_cache: bool = False,
|
289 |
cache_position: Optional[torch.LongTensor] = None,
|
290 |
-
):
|
291 |
if isinstance(past_key_value, StaticCache):
|
292 |
raise ValueError(
|
293 |
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
@@ -302,54 +393,35 @@ class CognitivessFlashAttention2(CognitivessAttention):
|
|
302 |
key_states = self.k_proj(hidden_states)
|
303 |
value_states = self.v_proj(hidden_states)
|
304 |
|
|
|
|
|
|
|
305 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
306 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
307 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
308 |
|
309 |
-
kv_seq_len = key_states.shape[-2]
|
310 |
-
if past_key_value is not None:
|
311 |
-
kv_seq_len += cache_position[0]
|
312 |
-
|
313 |
cos, sin = self.rotary_emb(value_states, position_ids)
|
314 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
315 |
|
316 |
if past_key_value is not None:
|
317 |
-
#
|
318 |
-
|
319 |
-
if (
|
320 |
-
getattr(self.config, "sliding_window", None) is not None
|
321 |
-
and kv_seq_len > self.config.sliding_window
|
322 |
-
and cache_has_contents
|
323 |
-
):
|
324 |
-
slicing_tokens = 1 - self.config.sliding_window
|
325 |
-
|
326 |
-
past_key = past_key_value[self.layer_idx][0]
|
327 |
-
past_value = past_key_value[self.layer_idx][1]
|
328 |
-
|
329 |
-
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
330 |
-
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
331 |
-
|
332 |
-
if past_key.shape[-2] != self.config.sliding_window - 1:
|
333 |
-
raise ValueError(
|
334 |
-
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
335 |
-
f" {past_key.shape}"
|
336 |
-
)
|
337 |
-
|
338 |
-
if attention_mask is not None:
|
339 |
-
attention_mask = attention_mask[:, slicing_tokens:]
|
340 |
-
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
341 |
-
|
342 |
-
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
343 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
344 |
|
345 |
-
#
|
346 |
-
|
347 |
-
|
348 |
-
|
|
|
|
|
|
|
349 |
|
350 |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
351 |
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
352 |
-
# cast them back in
|
|
|
|
|
|
|
353 |
input_dtype = query_states.dtype
|
354 |
if input_dtype == torch.float32:
|
355 |
if torch.is_autocast_enabled():
|
@@ -370,11 +442,6 @@ class CognitivessFlashAttention2(CognitivessAttention):
|
|
370 |
key_states = key_states.to(target_dtype)
|
371 |
value_states = value_states.to(target_dtype)
|
372 |
|
373 |
-
# Reashape to the expected shape for Flash Attention
|
374 |
-
query_states = query_states.transpose(1, 2)
|
375 |
-
key_states = key_states.transpose(1, 2)
|
376 |
-
value_states = value_states.transpose(1, 2)
|
377 |
-
|
378 |
attn_output = _flash_attention_forward(
|
379 |
query_states,
|
380 |
key_states,
|
@@ -382,12 +449,12 @@ class CognitivessFlashAttention2(CognitivessAttention):
|
|
382 |
attention_mask,
|
383 |
q_len,
|
384 |
dropout=dropout_rate,
|
385 |
-
sliding_window=getattr(self
|
386 |
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
387 |
is_causal=self.is_causal,
|
388 |
)
|
389 |
|
390 |
-
attn_output = attn_output.reshape(bsz, q_len,
|
391 |
attn_output = self.o_proj(attn_output)
|
392 |
|
393 |
if not output_attentions:
|
@@ -396,7 +463,6 @@ class CognitivessFlashAttention2(CognitivessAttention):
|
|
396 |
return attn_output, attn_weights, past_key_value
|
397 |
|
398 |
|
399 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Cognitivess
|
400 |
class CognitivessSdpaAttention(CognitivessAttention):
|
401 |
"""
|
402 |
Cognitivess attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
@@ -492,7 +558,6 @@ Cognitivess_ATTENTION_CLASSES = {
|
|
492 |
}
|
493 |
|
494 |
|
495 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->Cognitivess, LLAMA->Cognitivess
|
496 |
class CognitivessDecoderLayer(nn.Module):
|
497 |
def __init__(self, config: CognitivessConfig, layer_idx: int):
|
498 |
super().__init__()
|
@@ -594,10 +659,11 @@ class CognitivessPreTrainedModel(PreTrainedModel):
|
|
594 |
base_model_prefix = "model"
|
595 |
supports_gradient_checkpointing = True
|
596 |
_no_split_modules = ["CognitivessDecoderLayer"]
|
597 |
-
_skip_keys_device_placement = "past_key_values"
|
598 |
_supports_flash_attn_2 = True
|
599 |
_supports_sdpa = True
|
600 |
_supports_cache_class = True
|
|
|
601 |
_supports_static_cache = True
|
602 |
|
603 |
def _init_weights(self, module):
|
@@ -633,7 +699,7 @@ Cognitivess_INPUTS_DOCSTRING = r"""
|
|
633 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
634 |
[`PreTrainedTokenizer.__call__`] for details.
|
635 |
|
636 |
-
If `past_key_values` is used, optionally only the last `
|
637 |
`past_key_values`).
|
638 |
|
639 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
@@ -679,6 +745,10 @@ Cognitivess_INPUTS_DOCSTRING = r"""
|
|
679 |
more detail.
|
680 |
return_dict (`bool`, *optional*):
|
681 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
|
|
|
|
|
|
|
682 |
"""
|
683 |
|
684 |
|
@@ -703,10 +773,9 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
703 |
self.layers = nn.ModuleList(
|
704 |
[CognitivessDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
705 |
)
|
706 |
-
self._attn_implementation = config._attn_implementation
|
707 |
self.norm = CognitivessRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
708 |
-
|
709 |
self.gradient_checkpointing = False
|
|
|
710 |
# Initialize weights and apply final processing
|
711 |
self.post_init()
|
712 |
|
@@ -735,10 +804,8 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
735 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
736 |
)
|
737 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
738 |
-
|
739 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
740 |
|
741 |
-
# retrieve input_ids and inputs_embeds
|
742 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
743 |
raise ValueError(
|
744 |
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
@@ -746,7 +813,7 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
746 |
|
747 |
if self.gradient_checkpointing and self.training and use_cache:
|
748 |
logger.warning_once(
|
749 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False
|
750 |
)
|
751 |
use_cache = False
|
752 |
|
@@ -754,9 +821,9 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
754 |
inputs_embeds = self.embed_tokens(input_ids)
|
755 |
|
756 |
return_legacy_cache = False
|
757 |
-
if use_cache and not isinstance(past_key_values, Cache):
|
758 |
-
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
759 |
return_legacy_cache = True
|
|
|
760 |
logger.warning_once(
|
761 |
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
762 |
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
@@ -767,14 +834,14 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
767 |
cache_position = torch.arange(
|
768 |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
769 |
)
|
770 |
-
|
771 |
if position_ids is None:
|
772 |
position_ids = cache_position.unsqueeze(0)
|
773 |
|
774 |
causal_mask = self._update_causal_mask(
|
775 |
-
attention_mask, inputs_embeds, cache_position, past_key_values,
|
776 |
)
|
777 |
|
|
|
778 |
hidden_states = inputs_embeds
|
779 |
|
780 |
# decoder layers
|
@@ -841,7 +908,6 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
841 |
input_tensor: torch.Tensor,
|
842 |
cache_position: torch.Tensor,
|
843 |
past_key_values: Cache,
|
844 |
-
use_cache: bool,
|
845 |
output_attentions: bool,
|
846 |
):
|
847 |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
@@ -849,15 +915,7 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
849 |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
850 |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
851 |
|
852 |
-
if self._attn_implementation == "flash_attention_2":
|
853 |
-
if attention_mask is not None and use_cache:
|
854 |
-
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
855 |
-
if is_padding_right:
|
856 |
-
raise ValueError(
|
857 |
-
"You are attempting to perform batched generation with padding_side='right'"
|
858 |
-
" this may lead to unexpected behaviour for Flash Attention version of Cognitivess. Make sure to "
|
859 |
-
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
860 |
-
)
|
861 |
if attention_mask is not None and 0.0 in attention_mask:
|
862 |
return attention_mask
|
863 |
return None
|
@@ -865,22 +923,15 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
865 |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
866 |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
867 |
# to infer the attention mask.
|
868 |
-
|
869 |
-
# cache_position must be valid here no matter which cache we use
|
870 |
-
past_seen_tokens = cache_position[0] if past_key_values is not None else 0
|
871 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
872 |
-
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
873 |
|
874 |
-
|
875 |
-
|
876 |
-
and not (using_static_cache or using_sliding_window_cache)
|
877 |
-
and not output_attentions
|
878 |
-
):
|
879 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
880 |
attention_mask,
|
881 |
inputs_embeds=input_tensor,
|
882 |
past_key_values_length=past_seen_tokens,
|
883 |
-
sliding_window=self.config.sliding_window,
|
884 |
is_training=self.training,
|
885 |
):
|
886 |
return None
|
@@ -888,13 +939,8 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
888 |
dtype, device = input_tensor.dtype, input_tensor.device
|
889 |
min_dtype = torch.finfo(dtype).min
|
890 |
sequence_length = input_tensor.shape[1]
|
891 |
-
|
892 |
-
if using_sliding_window_cache:
|
893 |
-
target_length = max(sequence_length, self.config.sliding_window)
|
894 |
-
# StaticCache
|
895 |
-
elif using_static_cache:
|
896 |
target_length = past_key_values.get_max_length()
|
897 |
-
# DynamicCache or no cache
|
898 |
else:
|
899 |
target_length = (
|
900 |
attention_mask.shape[-1]
|
@@ -911,25 +957,18 @@ class CognitivessModel(CognitivessPreTrainedModel):
|
|
911 |
causal_mask = torch.full(
|
912 |
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
913 |
)
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
exclude_mask.bitwise_or_(
|
918 |
-
torch.arange(target_length, device=device)
|
919 |
-
<= (cache_position.reshape(-1, 1) - self.config.sliding_window)
|
920 |
-
)
|
921 |
-
causal_mask *= exclude_mask
|
922 |
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
923 |
if attention_mask is not None:
|
924 |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
)
|
932 |
-
|
933 |
if (
|
934 |
self.config._attn_implementation == "sdpa"
|
935 |
and attention_mask is not None
|
@@ -1015,7 +1054,6 @@ class CognitivessForCausalLM(CognitivessPreTrainedModel):
|
|
1015 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1016 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1017 |
```"""
|
1018 |
-
|
1019 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1020 |
output_hidden_states = (
|
1021 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
@@ -1037,7 +1075,12 @@ class CognitivessForCausalLM(CognitivessPreTrainedModel):
|
|
1037 |
)
|
1038 |
|
1039 |
hidden_states = outputs[0]
|
1040 |
-
|
|
|
|
|
|
|
|
|
|
|
1041 |
logits = logits.float()
|
1042 |
|
1043 |
loss = None
|
@@ -1046,11 +1089,11 @@ class CognitivessForCausalLM(CognitivessPreTrainedModel):
|
|
1046 |
shift_logits = logits[..., :-1, :].contiguous()
|
1047 |
shift_labels = labels[..., 1:].contiguous()
|
1048 |
# Flatten the tokens
|
|
|
1049 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1050 |
shift_labels = shift_labels.view(-1)
|
1051 |
-
#
|
1052 |
shift_labels = shift_labels.to(shift_logits.device)
|
1053 |
-
loss_fct = CrossEntropyLoss()
|
1054 |
loss = loss_fct(shift_logits, shift_labels)
|
1055 |
|
1056 |
if not return_dict:
|
@@ -1065,7 +1108,6 @@ class CognitivessForCausalLM(CognitivessPreTrainedModel):
|
|
1065 |
attentions=outputs.attentions,
|
1066 |
)
|
1067 |
|
1068 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
|
1069 |
def prepare_inputs_for_generation(
|
1070 |
self,
|
1071 |
input_ids,
|
@@ -1126,7 +1168,6 @@ class CognitivessForCausalLM(CognitivessPreTrainedModel):
|
|
1126 |
""",
|
1127 |
Cognitivess_START_DOCSTRING,
|
1128 |
)
|
1129 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Cognitivess, LLAMA->Cognitivess
|
1130 |
class CognitivessForSequenceClassification(CognitivessPreTrainedModel):
|
1131 |
def __init__(self, config):
|
1132 |
super().__init__(config)
|
@@ -1235,6 +1276,105 @@ class CognitivessForSequenceClassification(CognitivessPreTrainedModel):
|
|
1235 |
)
|
1236 |
|
1237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1238 |
@add_start_docstrings(
|
1239 |
"""
|
1240 |
The Cognitivess Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
@@ -1242,7 +1382,6 @@ class CognitivessForSequenceClassification(CognitivessPreTrainedModel):
|
|
1242 |
""",
|
1243 |
Cognitivess_START_DOCSTRING,
|
1244 |
)
|
1245 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Cognitivess, LLAMA->Cognitivess
|
1246 |
class CognitivessForTokenClassification(CognitivessPreTrainedModel):
|
1247 |
def __init__(self, config):
|
1248 |
super().__init__(config)
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2022 Cognitivess and the HuggingFace Inc. team. All rights reserved.
|
|
|
|
|
|
|
|
|
|
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
|
|
|
|
15 |
import math
|
16 |
from typing import List, Optional, Tuple, Union
|
17 |
|
18 |
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
import torch.utils.checkpoint
|
21 |
from torch import nn
|
22 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
|
24 |
from ...activations import ACT2FN
|
25 |
+
from ...cache_utils import Cache, DynamicCache, StaticCache
|
26 |
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
27 |
+
from ...modeling_flash_attention_utils import _flash_attention_forward
|
28 |
from ...modeling_outputs import (
|
29 |
BaseModelOutputWithPast,
|
30 |
CausalLMOutputWithPast,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
SequenceClassifierOutputWithPast,
|
33 |
TokenClassifierOutput,
|
34 |
)
|
35 |
from ...modeling_utils import PreTrainedModel
|
36 |
+
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
|
37 |
from ...utils import (
|
38 |
add_start_docstrings,
|
39 |
add_start_docstrings_to_model_forward,
|
|
|
40 |
is_flash_attn_greater_or_equal_2_10,
|
41 |
logging,
|
42 |
replace_return_docstrings,
|
|
|
44 |
from .configuration_Cognitivess import CognitivessConfig
|
45 |
|
46 |
|
|
|
|
|
|
|
47 |
logger = logging.get_logger(__name__)
|
48 |
|
49 |
_CONFIG_FOR_DOC = "CognitivessConfig"
|
50 |
|
51 |
|
|
|
52 |
class CognitivessRMSNorm(nn.Module):
|
53 |
def __init__(self, hidden_size, eps=1e-6):
|
54 |
"""
|
|
|
66 |
return self.weight * hidden_states.to(input_dtype)
|
67 |
|
68 |
|
69 |
+
ALL_LAYERNORM_LAYERS.append(CognitivessRMSNorm)
|
70 |
+
|
71 |
+
|
72 |
class CognitivessRotaryEmbedding(nn.Module):
|
73 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
74 |
super().__init__()
|
75 |
+
self.scaling_factor = scaling_factor
|
76 |
self.dim = dim
|
77 |
self.max_position_embeddings = max_position_embeddings
|
78 |
self.base = base
|
79 |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
80 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
81 |
+
# For BC we register cos and sin cached
|
82 |
+
self.max_seq_len_cached = max_position_embeddings
|
83 |
|
84 |
@torch.no_grad()
|
|
|
85 |
def forward(self, x, position_ids):
|
86 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
87 |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
|
98 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
99 |
|
100 |
|
101 |
+
class CognitivessLinearScalingRotaryEmbedding(CognitivessRotaryEmbedding):
|
102 |
+
"""CognitivessRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
103 |
+
|
104 |
+
def forward(self, x, position_ids):
|
105 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
106 |
+
position_ids = position_ids.float() / self.scaling_factor
|
107 |
+
cos, sin = super().forward(x, position_ids)
|
108 |
+
return cos, sin
|
109 |
+
|
110 |
+
|
111 |
+
class CognitivessDynamicNTKScalingRotaryEmbedding(CognitivessRotaryEmbedding):
|
112 |
+
"""CognitivessRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
113 |
+
|
114 |
+
def forward(self, x, position_ids):
|
115 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
116 |
+
seq_len = torch.max(position_ids) + 1
|
117 |
+
if seq_len > self.max_position_embeddings:
|
118 |
+
base = self.base * (
|
119 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
120 |
+
) ** (self.dim / (self.dim - 2))
|
121 |
+
inv_freq = 1.0 / (
|
122 |
+
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
123 |
+
)
|
124 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
125 |
+
|
126 |
+
cos, sin = super().forward(x, position_ids)
|
127 |
+
return cos, sin
|
128 |
+
|
129 |
+
|
130 |
def rotate_half(x):
|
131 |
"""Rotates half the hidden dims of the input."""
|
132 |
x1 = x[..., : x.shape[-1] // 2]
|
|
|
134 |
return torch.cat((-x2, x1), dim=-1)
|
135 |
|
136 |
|
|
|
137 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
138 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
139 |
|
|
|
164 |
class CognitivessMLP(nn.Module):
|
165 |
def __init__(self, config):
|
166 |
super().__init__()
|
167 |
+
self.config = config
|
168 |
self.hidden_size = config.hidden_size
|
169 |
self.intermediate_size = config.intermediate_size
|
170 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
171 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
172 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
173 |
self.act_fn = ACT2FN[config.hidden_act]
|
174 |
|
175 |
+
def forward(self, x):
|
176 |
+
if self.config.pretraining_tp > 1:
|
177 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
178 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
179 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
180 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
181 |
+
|
182 |
+
gate_proj = torch.cat(
|
183 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
184 |
+
)
|
185 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
186 |
+
|
187 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
188 |
+
down_proj = [
|
189 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
190 |
+
]
|
191 |
+
down_proj = sum(down_proj)
|
192 |
+
else:
|
193 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
194 |
+
|
195 |
+
return down_proj
|
196 |
|
197 |
|
|
|
198 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
199 |
"""
|
200 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
|
208 |
|
209 |
|
210 |
class CognitivessAttention(nn.Module):
|
211 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
|
|
|
212 |
|
213 |
def __init__(self, config: CognitivessConfig, layer_idx: Optional[int] = None):
|
214 |
super().__init__()
|
|
|
224 |
self.attention_dropout = config.attention_dropout
|
225 |
self.hidden_size = config.hidden_size
|
226 |
self.num_heads = config.num_attention_heads
|
227 |
+
self.head_dim = self.hidden_size // self.num_heads
|
228 |
self.num_key_value_heads = config.num_key_value_heads
|
229 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
230 |
self.max_position_embeddings = config.max_position_embeddings
|
231 |
self.rope_theta = config.rope_theta
|
232 |
self.is_causal = True
|
233 |
|
234 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
235 |
+
raise ValueError(
|
236 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
237 |
+
f" and `num_heads`: {self.num_heads})."
|
238 |
+
)
|
239 |
|
240 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
241 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
242 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
243 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
244 |
+
self._init_rope()
|
245 |
+
|
246 |
+
def _init_rope(self):
|
247 |
+
if self.config.rope_scaling is None:
|
248 |
+
self.rotary_emb = CognitivessRotaryEmbedding(
|
249 |
+
self.head_dim,
|
250 |
+
max_position_embeddings=self.max_position_embeddings,
|
251 |
+
base=self.rope_theta,
|
252 |
+
)
|
253 |
+
else:
|
254 |
+
scaling_type = self.config.rope_scaling["type"]
|
255 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
256 |
+
if scaling_type == "linear":
|
257 |
+
self.rotary_emb = CognitivessLinearScalingRotaryEmbedding(
|
258 |
+
self.head_dim,
|
259 |
+
max_position_embeddings=self.max_position_embeddings,
|
260 |
+
scaling_factor=scaling_factor,
|
261 |
+
base=self.rope_theta,
|
262 |
+
)
|
263 |
+
elif scaling_type == "dynamic":
|
264 |
+
self.rotary_emb = CognitivessDynamicNTKScalingRotaryEmbedding(
|
265 |
+
self.head_dim,
|
266 |
+
max_position_embeddings=self.max_position_embeddings,
|
267 |
+
scaling_factor=scaling_factor,
|
268 |
+
base=self.rope_theta,
|
269 |
+
)
|
270 |
+
else:
|
271 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
272 |
|
273 |
def forward(
|
274 |
self,
|
|
|
279 |
output_attentions: bool = False,
|
280 |
use_cache: bool = False,
|
281 |
cache_position: Optional[torch.LongTensor] = None,
|
282 |
+
**kwargs,
|
283 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
284 |
bsz, q_len, _ = hidden_states.size()
|
285 |
|
286 |
+
if self.config.pretraining_tp > 1:
|
287 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
288 |
+
query_slices = self.q_proj.weight.split(
|
289 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
290 |
+
)
|
291 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
292 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
293 |
+
|
294 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
295 |
+
query_states = torch.cat(query_states, dim=-1)
|
296 |
+
|
297 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
298 |
+
key_states = torch.cat(key_states, dim=-1)
|
299 |
+
|
300 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
301 |
+
value_states = torch.cat(value_states, dim=-1)
|
302 |
+
|
303 |
+
else:
|
304 |
+
query_states = self.q_proj(hidden_states)
|
305 |
+
key_states = self.k_proj(hidden_states)
|
306 |
+
value_states = self.v_proj(hidden_states)
|
307 |
|
308 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
309 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
339 |
|
340 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
341 |
|
342 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
343 |
+
|
344 |
+
if self.config.pretraining_tp > 1:
|
345 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
346 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
347 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
348 |
+
else:
|
349 |
+
attn_output = self.o_proj(attn_output)
|
350 |
|
351 |
if not output_attentions:
|
352 |
attn_weights = None
|
|
|
361 |
flash attention and deal with padding tokens in case the input contains any of them.
|
362 |
"""
|
363 |
|
|
|
364 |
def __init__(self, *args, **kwargs):
|
365 |
super().__init__(*args, **kwargs)
|
366 |
|
|
|
372 |
def forward(
|
373 |
self,
|
374 |
hidden_states: torch.Tensor,
|
375 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
376 |
position_ids: Optional[torch.LongTensor] = None,
|
377 |
past_key_value: Optional[Cache] = None,
|
378 |
output_attentions: bool = False,
|
379 |
use_cache: bool = False,
|
380 |
cache_position: Optional[torch.LongTensor] = None,
|
381 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
382 |
if isinstance(past_key_value, StaticCache):
|
383 |
raise ValueError(
|
384 |
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
|
|
393 |
key_states = self.k_proj(hidden_states)
|
394 |
value_states = self.v_proj(hidden_states)
|
395 |
|
396 |
+
# Flash attention requires the input to have the shape
|
397 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
398 |
+
# therefore we just need to keep the original shape
|
399 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
400 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
401 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
402 |
|
|
|
|
|
|
|
|
|
403 |
cos, sin = self.rotary_emb(value_states, position_ids)
|
404 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
405 |
|
406 |
if past_key_value is not None:
|
407 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
408 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
410 |
|
411 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
412 |
+
# to be able to avoid many of these transpose/reshape/view.
|
413 |
+
query_states = query_states.transpose(1, 2)
|
414 |
+
key_states = key_states.transpose(1, 2)
|
415 |
+
value_states = value_states.transpose(1, 2)
|
416 |
+
|
417 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
418 |
|
419 |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
420 |
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
421 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
422 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
423 |
+
# in fp32. (CognitivessRMSNorm handles it correctly)
|
424 |
+
|
425 |
input_dtype = query_states.dtype
|
426 |
if input_dtype == torch.float32:
|
427 |
if torch.is_autocast_enabled():
|
|
|
442 |
key_states = key_states.to(target_dtype)
|
443 |
value_states = value_states.to(target_dtype)
|
444 |
|
|
|
|
|
|
|
|
|
|
|
445 |
attn_output = _flash_attention_forward(
|
446 |
query_states,
|
447 |
key_states,
|
|
|
449 |
attention_mask,
|
450 |
q_len,
|
451 |
dropout=dropout_rate,
|
452 |
+
sliding_window=getattr(self, "sliding_window", None),
|
453 |
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
454 |
is_causal=self.is_causal,
|
455 |
)
|
456 |
|
457 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
458 |
attn_output = self.o_proj(attn_output)
|
459 |
|
460 |
if not output_attentions:
|
|
|
463 |
return attn_output, attn_weights, past_key_value
|
464 |
|
465 |
|
|
|
466 |
class CognitivessSdpaAttention(CognitivessAttention):
|
467 |
"""
|
468 |
Cognitivess attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
|
|
558 |
}
|
559 |
|
560 |
|
|
|
561 |
class CognitivessDecoderLayer(nn.Module):
|
562 |
def __init__(self, config: CognitivessConfig, layer_idx: int):
|
563 |
super().__init__()
|
|
|
659 |
base_model_prefix = "model"
|
660 |
supports_gradient_checkpointing = True
|
661 |
_no_split_modules = ["CognitivessDecoderLayer"]
|
662 |
+
_skip_keys_device_placement = ["past_key_values"]
|
663 |
_supports_flash_attn_2 = True
|
664 |
_supports_sdpa = True
|
665 |
_supports_cache_class = True
|
666 |
+
_supports_quantized_cache = True
|
667 |
_supports_static_cache = True
|
668 |
|
669 |
def _init_weights(self, module):
|
|
|
699 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
700 |
[`PreTrainedTokenizer.__call__`] for details.
|
701 |
|
702 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
703 |
`past_key_values`).
|
704 |
|
705 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
|
745 |
more detail.
|
746 |
return_dict (`bool`, *optional*):
|
747 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
748 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
749 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
750 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
751 |
+
the complete sequence length.
|
752 |
"""
|
753 |
|
754 |
|
|
|
773 |
self.layers = nn.ModuleList(
|
774 |
[CognitivessDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
775 |
)
|
|
|
776 |
self.norm = CognitivessRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
777 |
self.gradient_checkpointing = False
|
778 |
+
|
779 |
# Initialize weights and apply final processing
|
780 |
self.post_init()
|
781 |
|
|
|
804 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
805 |
)
|
806 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
807 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
808 |
|
|
|
809 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
810 |
raise ValueError(
|
811 |
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
|
|
813 |
|
814 |
if self.gradient_checkpointing and self.training and use_cache:
|
815 |
logger.warning_once(
|
816 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
817 |
)
|
818 |
use_cache = False
|
819 |
|
|
|
821 |
inputs_embeds = self.embed_tokens(input_ids)
|
822 |
|
823 |
return_legacy_cache = False
|
824 |
+
if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
|
|
|
825 |
return_legacy_cache = True
|
826 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
827 |
logger.warning_once(
|
828 |
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
829 |
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
|
|
834 |
cache_position = torch.arange(
|
835 |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
836 |
)
|
|
|
837 |
if position_ids is None:
|
838 |
position_ids = cache_position.unsqueeze(0)
|
839 |
|
840 |
causal_mask = self._update_causal_mask(
|
841 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
842 |
)
|
843 |
|
844 |
+
# embed positions
|
845 |
hidden_states = inputs_embeds
|
846 |
|
847 |
# decoder layers
|
|
|
908 |
input_tensor: torch.Tensor,
|
909 |
cache_position: torch.Tensor,
|
910 |
past_key_values: Cache,
|
|
|
911 |
output_attentions: bool,
|
912 |
):
|
913 |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
|
|
915 |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
916 |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
917 |
|
918 |
+
if self.config._attn_implementation == "flash_attention_2":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
919 |
if attention_mask is not None and 0.0 in attention_mask:
|
920 |
return attention_mask
|
921 |
return None
|
|
|
923 |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
924 |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
925 |
# to infer the attention mask.
|
926 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
|
|
|
927 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
|
928 |
|
929 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
930 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
|
|
|
|
|
|
931 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
932 |
attention_mask,
|
933 |
inputs_embeds=input_tensor,
|
934 |
past_key_values_length=past_seen_tokens,
|
|
|
935 |
is_training=self.training,
|
936 |
):
|
937 |
return None
|
|
|
939 |
dtype, device = input_tensor.dtype, input_tensor.device
|
940 |
min_dtype = torch.finfo(dtype).min
|
941 |
sequence_length = input_tensor.shape[1]
|
942 |
+
if using_static_cache:
|
|
|
|
|
|
|
|
|
943 |
target_length = past_key_values.get_max_length()
|
|
|
944 |
else:
|
945 |
target_length = (
|
946 |
attention_mask.shape[-1]
|
|
|
957 |
causal_mask = torch.full(
|
958 |
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
959 |
)
|
960 |
+
if sequence_length != 1:
|
961 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
962 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
|
|
|
|
|
|
|
|
|
|
963 |
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
964 |
if attention_mask is not None:
|
965 |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
966 |
+
mask_length = attention_mask.shape[-1]
|
967 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
968 |
+
padding_mask = padding_mask == 0
|
969 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
970 |
+
padding_mask, min_dtype
|
971 |
+
)
|
|
|
|
|
972 |
if (
|
973 |
self.config._attn_implementation == "sdpa"
|
974 |
and attention_mask is not None
|
|
|
1054 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1055 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1056 |
```"""
|
|
|
1057 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1058 |
output_hidden_states = (
|
1059 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
1075 |
)
|
1076 |
|
1077 |
hidden_states = outputs[0]
|
1078 |
+
if self.config.pretraining_tp > 1:
|
1079 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1080 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1081 |
+
logits = torch.cat(logits, dim=-1)
|
1082 |
+
else:
|
1083 |
+
logits = self.lm_head(hidden_states)
|
1084 |
logits = logits.float()
|
1085 |
|
1086 |
loss = None
|
|
|
1089 |
shift_logits = logits[..., :-1, :].contiguous()
|
1090 |
shift_labels = labels[..., 1:].contiguous()
|
1091 |
# Flatten the tokens
|
1092 |
+
loss_fct = CrossEntropyLoss()
|
1093 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1094 |
shift_labels = shift_labels.view(-1)
|
1095 |
+
# Enable model parallelism
|
1096 |
shift_labels = shift_labels.to(shift_logits.device)
|
|
|
1097 |
loss = loss_fct(shift_logits, shift_labels)
|
1098 |
|
1099 |
if not return_dict:
|
|
|
1108 |
attentions=outputs.attentions,
|
1109 |
)
|
1110 |
|
|
|
1111 |
def prepare_inputs_for_generation(
|
1112 |
self,
|
1113 |
input_ids,
|
|
|
1168 |
""",
|
1169 |
Cognitivess_START_DOCSTRING,
|
1170 |
)
|
|
|
1171 |
class CognitivessForSequenceClassification(CognitivessPreTrainedModel):
|
1172 |
def __init__(self, config):
|
1173 |
super().__init__(config)
|
|
|
1276 |
)
|
1277 |
|
1278 |
|
1279 |
+
@add_start_docstrings(
|
1280 |
+
"""
|
1281 |
+
The Cognitivess Model transformer with a span classification head on top for extractive question-answering tasks like
|
1282 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1283 |
+
""",
|
1284 |
+
Cognitivess_START_DOCSTRING,
|
1285 |
+
)
|
1286 |
+
class CognitivessForQuestionAnswering(CognitivessPreTrainedModel):
|
1287 |
+
base_model_prefix = "transformer"
|
1288 |
+
|
1289 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Cognitivess
|
1290 |
+
def __init__(self, config):
|
1291 |
+
super().__init__(config)
|
1292 |
+
self.transformer = CognitivessModel(config)
|
1293 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1294 |
+
|
1295 |
+
# Initialize weights and apply final processing
|
1296 |
+
self.post_init()
|
1297 |
+
|
1298 |
+
def get_input_embeddings(self):
|
1299 |
+
return self.transformer.embed_tokens
|
1300 |
+
|
1301 |
+
def set_input_embeddings(self, value):
|
1302 |
+
self.transformer.embed_tokens = value
|
1303 |
+
|
1304 |
+
@add_start_docstrings_to_model_forward(Cognitivess_INPUTS_DOCSTRING)
|
1305 |
+
def forward(
|
1306 |
+
self,
|
1307 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1308 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1309 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1310 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1311 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1312 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1313 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1314 |
+
output_attentions: Optional[bool] = None,
|
1315 |
+
output_hidden_states: Optional[bool] = None,
|
1316 |
+
return_dict: Optional[bool] = None,
|
1317 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1318 |
+
r"""
|
1319 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1320 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1321 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1322 |
+
are not taken into account for computing the loss.
|
1323 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1324 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1325 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1326 |
+
are not taken into account for computing the loss.
|
1327 |
+
"""
|
1328 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1329 |
+
|
1330 |
+
outputs = self.transformer(
|
1331 |
+
input_ids,
|
1332 |
+
attention_mask=attention_mask,
|
1333 |
+
position_ids=position_ids,
|
1334 |
+
past_key_values=past_key_values,
|
1335 |
+
inputs_embeds=inputs_embeds,
|
1336 |
+
output_attentions=output_attentions,
|
1337 |
+
output_hidden_states=output_hidden_states,
|
1338 |
+
return_dict=return_dict,
|
1339 |
+
)
|
1340 |
+
|
1341 |
+
sequence_output = outputs[0]
|
1342 |
+
|
1343 |
+
logits = self.qa_outputs(sequence_output)
|
1344 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1345 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1346 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1347 |
+
|
1348 |
+
total_loss = None
|
1349 |
+
if start_positions is not None and end_positions is not None:
|
1350 |
+
# If we are on multi-GPU, split add a dimension
|
1351 |
+
if len(start_positions.size()) > 1:
|
1352 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1353 |
+
if len(end_positions.size()) > 1:
|
1354 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1355 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1356 |
+
ignored_index = start_logits.size(1)
|
1357 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1358 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1359 |
+
|
1360 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1361 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1362 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1363 |
+
total_loss = (start_loss + end_loss) / 2
|
1364 |
+
|
1365 |
+
if not return_dict:
|
1366 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1367 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1368 |
+
|
1369 |
+
return QuestionAnsweringModelOutput(
|
1370 |
+
loss=total_loss,
|
1371 |
+
start_logits=start_logits,
|
1372 |
+
end_logits=end_logits,
|
1373 |
+
hidden_states=outputs.hidden_states,
|
1374 |
+
attentions=outputs.attentions,
|
1375 |
+
)
|
1376 |
+
|
1377 |
+
|
1378 |
@add_start_docstrings(
|
1379 |
"""
|
1380 |
The Cognitivess Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
|
|
1382 |
""",
|
1383 |
Cognitivess_START_DOCSTRING,
|
1384 |
)
|
|
|
1385 |
class CognitivessForTokenClassification(CognitivessPreTrainedModel):
|
1386 |
def __init__(self, config):
|
1387 |
super().__init__(config)
|