cognitivess commited on
Commit
684cf6f
·
verified ·
1 Parent(s): 0cfbce2

Update cognitivess_model/configuration_cognitivess.py

Browse files
cognitivess_model/configuration_cognitivess.py CHANGED
@@ -1,33 +1,150 @@
1
- # cognitivess_model/configuration_cognitivess.py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- from transformers import PretrainedConfig
4
 
5
  class CognitivessConfig(PretrainedConfig):
6
- model_type = "cognitivess"
7
-
8
- def __init__(self, hidden_size=4096, num_hidden_layers=32, num_attention_heads=32, intermediate_size=14336,
9
- hidden_act="silu", layer_norm_eps=1e-05, max_position_embeddings=8192, vocab_size=128256,
10
- bos_token_id=128000, eos_token_id=128001, pad_token_id=0, attention_dropout=0.0,
11
- attention_bias=False, tie_word_embeddings=False, mlp_bias=False, pretraining_tp=1,
12
- rope_scaling=None, rope_theta=500000.0, num_key_value_heads=8, use_cache=True, **kwargs):
13
- super().__init__(**kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  self.hidden_size = hidden_size
 
15
  self.num_hidden_layers = num_hidden_layers
16
  self.num_attention_heads = num_attention_heads
17
- self.intermediate_size = intermediate_size
18
- self.hidden_act = hidden_act
19
- self.layer_norm_eps = layer_norm_eps
20
- self.max_position_embeddings = max_position_embeddings
21
- self.vocab_size = vocab_size
22
- self.bos_token_id = bos_token_id
23
- self.eos_token_id = eos_token_id
24
- self.pad_token_id = pad_token_id
25
- self.attention_dropout = attention_dropout
26
- self.attention_bias = attention_bias
27
- self.tie_word_embeddings = tie_word_embeddings
28
- self.mlp_bias = mlp_bias
29
- self.pretraining_tp = pretraining_tp
30
- self.rope_scaling = rope_scaling
31
- self.rope_theta = rope_theta
32
  self.num_key_value_heads = num_key_value_heads
 
 
 
33
  self.use_cache = use_cache
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Cognitivess AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Cognitivess model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
 
 
23
 
24
  class CognitivessConfig(PretrainedConfig):
25
+ r"""
26
+ This is the configuration class to store the configuration of a [`CognitivessModel`]. It is used to instantiate an
27
+ Cognitivess model according to the specified arguments, defining the model architecture. Instantiating a configuration
28
+ with the defaults will yield a similar configuration to that of the Cognitivess-8B-v0.1.
29
+
30
+ [CognitivessAI/cognitivess](https://huggingface.co/CognitivessAI/cognitivess)
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the Cognitivess model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`CognitivessModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 14336):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ num_key_value_heads (`int`, *optional*, defaults to 8):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
55
+ head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
56
+ The attention head dimension.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
60
+ The maximum sequence length that this model might ever be used with. Cognitivess's sliding window attention
61
+ allows sequence of up to 4096*32 tokens.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ pad_token_id (`int`, *optional*):
70
+ The id of the padding token.
71
+ bos_token_id (`int`, *optional*, defaults to 1):
72
+ The id of the "beginning-of-sequence" token.
73
+ eos_token_id (`int`, *optional*, defaults to 2):
74
+ The id of the "end-of-sequence" token.
75
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
76
+ Whether the model's input and output word embeddings should be tied.
77
+ rope_theta (`float`, *optional*, defaults to 10000.0):
78
+ The base period of the RoPE embeddings.
79
+ sliding_window (`int`, *optional*, defaults to 4096):
80
+ Sliding window attention window size. If not specified, will default to `4096`.
81
+ attention_dropout (`float`, *optional*, defaults to 0.0):
82
+ The dropout ratio for the attention probabilities.
83
+
84
+ ```python
85
+ >>> from transformers import CognitivessModel, CognitivessConfig
86
+
87
+ >>> # Initializing a Cognitivess 8B style configuration
88
+ >>> configuration = CognitivessConfig()
89
+
90
+ >>> # Initializing a model from the Cognitivess 8B style configuration
91
+ >>> model = CognitivessModel(configuration)
92
+
93
+ >>> # Accessing the model configuration
94
+ >>> configuration = model.config
95
+ ```"""
96
+
97
+ model_type = "Cognitivess"
98
+ keys_to_ignore_at_inference = ["past_key_values"]
99
+
100
+ def __init__(
101
+ self,
102
+ vocab_size=32000,
103
+ hidden_size=4096,
104
+ intermediate_size=14336,
105
+ num_hidden_layers=32,
106
+ num_attention_heads=32,
107
+ num_key_value_heads=8,
108
+ head_dim=None,
109
+ hidden_act="silu",
110
+ max_position_embeddings=4096 * 32,
111
+ initializer_range=0.02,
112
+ rms_norm_eps=1e-6,
113
+ use_cache=True,
114
+ pad_token_id=None,
115
+ bos_token_id=1,
116
+ eos_token_id=2,
117
+ tie_word_embeddings=False,
118
+ rope_theta=10000.0,
119
+ sliding_window=4096,
120
+ attention_dropout=0.0,
121
+ **kwargs,
122
+ ):
123
+ self.vocab_size = vocab_size
124
+ self.max_position_embeddings = max_position_embeddings
125
  self.hidden_size = hidden_size
126
+ self.intermediate_size = intermediate_size
127
  self.num_hidden_layers = num_hidden_layers
128
  self.num_attention_heads = num_attention_heads
129
+ self.sliding_window = sliding_window
130
+ self.head_dim = head_dim or hidden_size // num_attention_heads
131
+
132
+ # for backward compatibility
133
+ if num_key_value_heads is None:
134
+ num_key_value_heads = num_attention_heads
135
+
 
 
 
 
 
 
 
 
136
  self.num_key_value_heads = num_key_value_heads
137
+ self.hidden_act = hidden_act
138
+ self.initializer_range = initializer_range
139
+ self.rms_norm_eps = rms_norm_eps
140
  self.use_cache = use_cache
141
+ self.rope_theta = rope_theta
142
+ self.attention_dropout = attention_dropout
143
+
144
+ super().__init__(
145
+ pad_token_id=pad_token_id,
146
+ bos_token_id=bos_token_id,
147
+ eos_token_id=eos_token_id,
148
+ tie_word_embeddings=tie_word_embeddings,
149
+ **kwargs,
150
+ )