# cognitivess_model/tokenization_cognitivess.py from transformers import PreTrainedTokenizer import json class CognitivessTokenizer(PreTrainedTokenizer): def __init__(self, vocab_file, merges_file=None, **kwargs): super().__init__(**kwargs) self.vocab_file = vocab_file self.merges_file = merges_file self.load_vocab() def load_vocab(self): # Load vocabulary with open(self.vocab_file, 'r') as f: self.vocab = {line.strip(): idx for idx, line in enumerate(f)} # Load merges file if exists self.merges = [] if self.merges_file: with open(self.merges_file, 'r') as f: self.merges = [line.strip() for line in f] def _tokenize(self, text): # Tokenization logic (basic example) tokens = text.split() # Simple whitespace-based tokenization return tokens def convert_tokens_to_ids(self, tokens): return [self.vocab.get(token, self.vocab.get('[UNK]')) for token in tokens] def convert_ids_to_tokens(self, ids): reverse_vocab = {idx: token for token, idx in self.vocab.items()} return [reverse_vocab.get(idx, '[UNK]') for idx in ids] def save_vocabulary(self, save_directory): vocab_path = f"{save_directory}/vocab.txt" with open(vocab_path, 'w') as f: for token in self.vocab: f.write(f"{token}\n") if self.merges_file: merges_path = f"{save_directory}/merges.txt" with open(merges_path, 'w') as f: for merge in self.merges: f.write(f"{merge}\n") return vocab_path, merges_path return vocab_path,