# Copyright 2022 Cognitivess and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import json import os import shutil import warnings import torch from transformers import CognitivessConfig, CognitivessForCausalLM, CognitivessTokenizer, PreTrainedTokenizerFast from transformers.convert_slow_tokenizer import TikTokenConverter try: from transformers import CognitivessTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) CognitivessTokenizerFast = None """ Sample usage: ``` python src/transformers/models/Cognitivess/convert_Cognitivess_weights_to_hf.py \ --input_dir /path/to/downloaded/Cognitivess/weights --model_size 8B --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import CognitivessForCausalLM, CognitivessTokenizer model = CognitivessForCausalLM.from_pretrained("/output/path") tokenizer = CognitivessTokenizer.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). If you want you tokenizer to add a bos automatically you should update the tokenizer._tokenizers.post_processor: ```py from tokenizers import processors bos = "<|begin_of_text|>" tokenizer._tokenizers.post_processor = processors.Sequence( [ processors.ByteLevel(trim_offsets=False), processors.TemplateProcessing( single=f"{bos}:0 $A:0", pair=f"{bos}:0 $A:0 {bos}:1 $B:1", special_tokens=[ (bos, tokenizer.encode(bos)), ], ), ] ) ``` """ NUM_SHARDS = { "7B": 1, "8B": 1, "8Bf": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "34B": 4, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) def read_json(path): with open(path, "r") as f: return json.load(f) def write_json(text, path): with open(path, "w") as f: json.dump(text, f) def write_model( model_path, input_base_path, model_size=None, safe_serialization=True, Cognitivess_version=1, vocab_size=None, num_shards=None, ): os.makedirs(model_path, exist_ok=True) tmp_model_path = os.path.join(model_path, "tmp") os.makedirs(tmp_model_path, exist_ok=True) params = read_json(os.path.join(input_base_path, "params.json")) num_shards = NUM_SHARDS[model_size] if num_shards is None else num_shards params = params.get("model", params) n_layers = params["n_layers"] n_heads = params["n_heads"] n_heads_per_shard = n_heads // num_shards dim = params["dim"] dims_per_head = dim // n_heads base = params.get("rope_theta", 10000.0) inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) if base > 10000.0 and Cognitivess_version != 3: max_position_embeddings = 16384 else: # Depending on the Cognitivess version, the default max_position_embeddings has different values. if Cognitivess_version == 1: max_position_embeddings = 2048 elif Cognitivess_version == 2: max_position_embeddings = 4096 elif Cognitivess_version == 3: max_position_embeddings = 8192 vocab_size = vocab_size if vocab_size is not None else 32000 if params.get("n_kv_heads", None) is not None: num_key_value_heads = params["n_kv_heads"] # for GQA / MQA num_key_value_heads_per_shard = num_key_value_heads // num_shards key_value_dim = dims_per_head * num_key_value_heads else: # compatibility with other checkpoints num_key_value_heads = n_heads num_key_value_heads_per_shard = n_heads_per_shard key_value_dim = dims_per_head * num_key_value_heads print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim) # permute for sliced rotary def permute(w, n_heads, dim1=dim, dim2=dim): return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2) print(f"Fetching all parameters from the checkpoint at {input_base_path}.") # Load weights if num_shards == 1: # Not sharded # (The sharded implementation would also work, but this is simpler.) loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") else: # Sharded loaded = [ torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in os.listdir(input_base_path) if file.endswith(".pth") ] param_count = 0 index_dict = {"weight_map": {}} for layer_i in range(n_layers): filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if num_shards == 1: # Unsharded state_dict = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"], n_heads=num_key_value_heads, dim1=key_value_dim, ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. state_dict = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(len(loaded)) ], dim=0, ).reshape(dim, dim), n_heads=n_heads, ) state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( num_key_value_heads_per_shard, dims_per_head, dim ) for i in range(len(loaded)) ], dim=0, ).reshape(key_value_dim, dim), num_key_value_heads, key_value_dim, dim, ) state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( num_key_value_heads_per_shard, dims_per_head, dim ) for i in range(len(loaded)) ], dim=0, ).reshape(key_value_dim, dim) state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(len(loaded))], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(len(loaded))], dim=0 ) state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(len(loaded))], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(len(loaded))], dim=0 ) state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if num_shards == 1: # Unsharded state_dict = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: concat_dim = 0 if Cognitivess_version == 3 else 1 state_dict = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(len(loaded))], dim=concat_dim ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(len(loaded))], dim=0), } for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) # Write configs index_dict["metadata"] = {"total_size": param_count * 2} write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 multiple_of = params["multiple_of"] if "multiple_of" in params else 256 config = CognitivessConfig( hidden_size=dim, intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of), num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], num_key_value_heads=num_key_value_heads, vocab_size=vocab_size, rope_theta=base, max_position_embeddings=max_position_embeddings, bos_token_id=128000 if Cognitivess_version == 3 else 1, eos_token_id=128001 if Cognitivess_version == 3 else 2, ) config.save_pretrained(tmp_model_path) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Cognitivess model.") model = CognitivessForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) # Avoid saving this as part of the config. del model.config._name_or_path model.config.torch_dtype = torch.float16 print("Saving in the Transformers format.") model.save_pretrained(model_path, safe_serialization=safe_serialization) shutil.rmtree(tmp_model_path, ignore_errors=True) class Cognitivess3Converter(TikTokenConverter): def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs): super().__init__(vocab_file, **kwargs) tokenizer = self.converted() chat_template = ( "{% set loop_messages = messages %}" "{% for message in loop_messages %}" "{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}" "{% if loop.index0 == 0 %}" "{% set content = bos_token + content %}" "{% endif %}" "{{ content }}" "{% endfor %}" "{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}" ) num_reserved_special_tokens = 256 special_tokens = [ "<|begin_of_text|>", "<|end_of_text|>", "<|reserved_special_token_0|>", "<|reserved_special_token_1|>", "<|reserved_special_token_2|>", "<|reserved_special_token_3|>", "<|start_header_id|>", "<|end_header_id|>", "<|reserved_special_token_4|>", "<|eot_id|>", # end of turn ] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)] tokenizer.add_special_tokens(special_tokens) self.tokenizer = PreTrainedTokenizerFast( tokenizer_object=tokenizer, bos_token="<|begin_of_text|>", eos_token="<|end_of_text|>", chat_template=chat_template, model_input_names=["input_ids", "attention_mask"], ) def write_tokenizer(tokenizer_path, input_tokenizer_path, Cognitivess_version=2): tokenizer_class = CognitivessTokenizer if CognitivessTokenizerFast is None else CognitivessTokenizerFast if Cognitivess_version == 3: tokenizer = Cognitivess3Converter(input_tokenizer_path).tokenizer else: tokenizer = tokenizer_class(input_tokenizer_path) print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") tokenizer.save_pretrained(tokenizer_path) return tokenizer def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of Cognitivess weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", default=None, help="'f' Deprecated in favor of `num_shards`: models correspond to the finetuned versions, and are specific to the Cognitivess2 official release. For more details on Cognitivess2, checkout the original repo: https://huggingface.co/meta-Cognitivess", ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument( "--safe_serialization", default=True, type=bool, help="Whether or not to save using `safetensors`." ) # Different Cognitivess versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used. parser.add_argument( "--Cognitivess_version", choices=[1, 2, 3], default=1, type=int, help="Version of the Cognitivess model to convert. Currently supports Cognitivess1 and Cognitivess2. Controls the context size", ) parser.add_argument( "--num_shards", default=None, type=int, help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth", ) args = parser.parse_args() if args.model_size is None and args.num_shards is None: raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`") spm_path = os.path.join(args.input_dir, "tokenizer.model") vocab_size = len(write_tokenizer(args.output_dir, spm_path, Cognitivess_version=args.Cognitivess_version)) if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=args.input_dir, model_size=args.model_size, safe_serialization=args.safe_serialization, Cognitivess_version=args.Cognitivess_version, vocab_size=vocab_size, num_shards=args.num_shards, ) if __name__ == "__main__": main()