# Cognitivess Model ## Usage To use this model, first install the custom package: ```bash # Install required packages !pip install bitsandbytes accelerate !pip install git+https://huggingface.co/CognitivessAI/cognitivess ``` Then, you can use the model like this: ```python # Import necessary libraries from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import torch # Import and register your custom classes from cognitivess_model import CognitivessConfig, CognitivessForCausalLM from transformers import AutoConfig, AutoModelForCausalLM AutoConfig.register("cognitivess", CognitivessConfig) AutoModelForCausalLM.register(CognitivessConfig, CognitivessForCausalLM) # Set up quantization config quantization_config = BitsAndBytesConfig(load_in_8bit=True) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("CognitivessAI/cognitivess") # Load model configuration config = CognitivessConfig.from_pretrained("CognitivessAI/cognitivess") # Set the quantization config in the model configuration config.quantization_config = quantization_config # Load model with the updated configuration model = CognitivessForCausalLM.from_pretrained( "CognitivessAI/cognitivess", config=config, quantization_config=quantization_config, device_map="auto" ) # Prepare input input_text = "Write me a poem about Machine Learning." inputs = tokenizer(input_text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") # Generate output with torch.no_grad(): outputs = model.generate(**inputs, max_length=100) # Decode and print the result print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```