File size: 7,641 Bytes
28e56c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import streamlit as st
import uuid
import sys
import requests
from peft import *
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset
from huggingface_hub import notebook_login
from peft import (
    LoraConfig,
    PeftConfig,
    get_peft_model,
    prepare_model_for_kbit_training,
)
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)


USER_ICON = "images/user-icon.png"
AI_ICON = "images/ai-icon.png"
MAX_HISTORY_LENGTH = 5

if 'user_id' in st.session_state:
    user_id = st.session_state['user_id']
else:
    user_id = str(uuid.uuid4())
    st.session_state['user_id'] = user_id

if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []

if "chats" not in st.session_state:
    st.session_state.chats = [
        {
            'id': 0,
            'question': '',
            'answer': ''
        }
    ]

if "questions" not in st.session_state:
    st.session_state.questions = []

if "answers" not in st.session_state:
    st.session_state.answers = []

if "input" not in st.session_state:
    st.session_state.input = ""

st.markdown("""
        <style>
               .block-container {
                    padding-top: 32px;
                    padding-bottom: 32px;
                    padding-left: 0;
                    padding-right: 0;
                }
                .element-container img {
                    background-color: #000000;
                }

                .main-header {
                    font-size: 24px;
                }
        </style>
        """, unsafe_allow_html=True)

def write_top_bar():
    col1, col2, col3 = st.columns([1,10,2])
    with col1:
        st.image(AI_ICON, use_column_width='always')
    with col2:
        header = "Cogwise Intelligent Assistant"
        st.write(f"<h3 class='main-header'>{header}</h3>", unsafe_allow_html=True)
    with col3:
        clear = st.button("Clear Chat")
    return clear

clear = write_top_bar()

if clear:
    st.session_state.questions = []
    st.session_state.answers = []
    st.session_state.input = ""
    st.session_state["chat_history"] = []

def handle_input():
    input = st.session_state.input
    question_with_id = {
        'question': input,
        'id': len(st.session_state.questions)
    }
    st.session_state.questions.append(question_with_id)

    chat_history = st.session_state["chat_history"]
    if len(chat_history) == MAX_HISTORY_LENGTH:
        chat_history = chat_history[:-1]

    # api_url = "https://9pl792yjf9.execute-api.us-east-1.amazonaws.com/beta/chatcogwise"
    # api_request_data = {"question": input, "session": user_id}
    # api_response = requests.post(api_url, json=api_request_data)
    # result = api_response.json()

    # answer = result['answer']
    # !pip install -Uqqq pip --progress-bar off
    # !pip install -qqq bitsandbytes == 0.39.0
    # !pip install -qqqtorch --2.0.1 --progress-bar off
    # !pip install -qqq -U git + https://github.com/huggingface/transformers.git@e03a9cc --progress-bar off
    # !pip install -qqq -U git + https://github.com/huggingface/peft.git@42a184f --progress-bar off
    # !pip install -qqq -U git + https://github.com/huggingface/accelerate.git@c9fbb71 --progress-bar off
    # !pip install -qqq datasets == 2.12.0 --progress-bar off
    # !pip install -qqq loralib == 0.1.1 --progress-bar off
    # !pip install einops

    import os
    # from pprint import pprint
    # import json



    os.environ["CUDA_VISIBLE_DEVICES"] = "0"

    # notebook_login()
    # 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

    # """### Load dataset"""

    from datasets import load_dataset

    dataset_name = "nisaar/Lawyer_GPT_India"
    # dataset_name = "patrick11434/TEST_LLM_DATASET"
    dataset = load_dataset(dataset_name, split="train")

    # """## Load adapters from the Hub

    # You can also directly load adapters from the Hub using the commands below:
    # """


    # change peft_model_id
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        load_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16,
    )

    peft_model_id = "nisaar/falcon7b-Indian_Law_150Prompts"
    config = PeftConfig.from_pretrained(peft_model_id)
    model = AutoModelForCausalLM.from_pretrained(
        config.base_model_name_or_path,
        return_dict=True,
        quantization_config=bnb_config,
        device_map="auto",
        trust_remote_code=True,
    )
    tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
    tokenizer.pad_token = tokenizer.eos_token

    model = PeftModel.from_pretrained(model, peft_model_id)

    """## Inference

    You can then directly use the trained model or the model that you have loaded from the 🤗 Hub for inference as you would do it usually in `transformers`.
    """

    generation_config = model.generation_config
    generation_config.max_new_tokens = 200
    generation_config_temperature = 1
    generation_config.top_p = 0.7
    generation_config.num_return_sequences = 1
    generation_config.pad_token_id = tokenizer.eos_token_id
    generation_config_eod_token_id = tokenizer.eos_token_id

    DEVICE = "cuda:0"

    # Commented out IPython magic to ensure Python compatibility.
    # %%time
    # prompt = f"""
    # <human>: Who appoints the Chief Justice of India?
    # <assistant>:
    # """.strip()
    #
    # encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
    # with torch.inference_mode():
    #   outputs = model.generate(
    #       input_ids=encoding.attention_mask,
    #       generation_config=generation_config,
    #   )
    # print(tokenizer.decode(outputs[0],skip_special_tokens=True))

    def generate_response(question: str) -> str:
        prompt = f"""
        <human>: {question}
        <assistant>:
        """.strip()
        encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
        with torch.inference_mode():
            outputs = model.generate(
                input_ids=encoding.input_ids,
                attention_mask=encoding.attention_mask,
                generation_config=generation_config,
            )
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)

        assistant_start = '<assistant>:'
        response_start = response.find(assistant_start)
        return response[response_start + len(assistant_start):].strip()

    # prompt = "Debate the merits and demerits of introducing simultaneous elections in India?"
    prompt=input
    answer=print(generate_response(prompt))

    # answer='Yes'
    chat_history.append((input, answer))

    st.session_state.answers.append({
        'answer': answer,
        'id': len(st.session_state.questions)
    })
    st.session_state.input = ""

def write_user_message(md):
    col1, col2 = st.columns([1,12])

    with col1:
        st.image(USER_ICON, use_column_width='always')
    with col2:
        st.warning(md['question'])

def render_answer(answer):
    col1, col2 = st.columns([1,12])
    with col1:
        st.image(AI_ICON, use_column_width='always')
    with col2:
        st.info(answer)

def write_chat_message(md, q):
    chat = st.container()
    with chat:
        render_answer(md['answer'])

with st.container():
    for (q, a) in zip(st.session_state.questions, st.session_state.answers):
        write_user_message(q)
        write_chat_message(a, q)

st.markdown('---')
input = st.text_input("You are talking to an AI, ask any question.", key="input", on_change=handle_input)