add files
Browse files- .gitattributes +1 -0
- README.md +1103 -0
- config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +21 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,1103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
model-index:
|
5 |
+
- name: embed-multilingual-v3.0
|
6 |
+
results:
|
7 |
+
- task:
|
8 |
+
type: Classification
|
9 |
+
dataset:
|
10 |
+
type: mteb/amazon_counterfactual
|
11 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
12 |
+
config: en
|
13 |
+
split: test
|
14 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
15 |
+
metrics:
|
16 |
+
- type: accuracy
|
17 |
+
value: 77.85074626865672
|
18 |
+
- type: ap
|
19 |
+
value: 41.53151744002314
|
20 |
+
- type: f1
|
21 |
+
value: 71.94656880817726
|
22 |
+
- task:
|
23 |
+
type: Classification
|
24 |
+
dataset:
|
25 |
+
type: mteb/amazon_polarity
|
26 |
+
name: MTEB AmazonPolarityClassification
|
27 |
+
config: default
|
28 |
+
split: test
|
29 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
30 |
+
metrics:
|
31 |
+
- type: accuracy
|
32 |
+
value: 95.600375
|
33 |
+
- type: ap
|
34 |
+
value: 93.57882128753579
|
35 |
+
- type: f1
|
36 |
+
value: 95.59945484944305
|
37 |
+
- task:
|
38 |
+
type: Classification
|
39 |
+
dataset:
|
40 |
+
type: mteb/amazon_reviews_multi
|
41 |
+
name: MTEB AmazonReviewsClassification (en)
|
42 |
+
config: en
|
43 |
+
split: test
|
44 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
45 |
+
metrics:
|
46 |
+
- type: accuracy
|
47 |
+
value: 49.794
|
48 |
+
- type: f1
|
49 |
+
value: 48.740439663130985
|
50 |
+
- task:
|
51 |
+
type: Retrieval
|
52 |
+
dataset:
|
53 |
+
type: arguana
|
54 |
+
name: MTEB ArguAna
|
55 |
+
config: default
|
56 |
+
split: test
|
57 |
+
revision: None
|
58 |
+
metrics:
|
59 |
+
- type: ndcg_at_10
|
60 |
+
value: 55.105000000000004
|
61 |
+
- task:
|
62 |
+
type: Clustering
|
63 |
+
dataset:
|
64 |
+
type: mteb/arxiv-clustering-p2p
|
65 |
+
name: MTEB ArxivClusteringP2P
|
66 |
+
config: default
|
67 |
+
split: test
|
68 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
69 |
+
metrics:
|
70 |
+
- type: v_measure
|
71 |
+
value: 48.15653426568874
|
72 |
+
- task:
|
73 |
+
type: Clustering
|
74 |
+
dataset:
|
75 |
+
type: mteb/arxiv-clustering-s2s
|
76 |
+
name: MTEB ArxivClusteringS2S
|
77 |
+
config: default
|
78 |
+
split: test
|
79 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
80 |
+
metrics:
|
81 |
+
- type: v_measure
|
82 |
+
value: 40.78876256237919
|
83 |
+
- task:
|
84 |
+
type: Reranking
|
85 |
+
dataset:
|
86 |
+
type: mteb/askubuntudupquestions-reranking
|
87 |
+
name: MTEB AskUbuntuDupQuestions
|
88 |
+
config: default
|
89 |
+
split: test
|
90 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
91 |
+
metrics:
|
92 |
+
- type: map
|
93 |
+
value: 62.12873500780318
|
94 |
+
- type: mrr
|
95 |
+
value: 75.87037769863255
|
96 |
+
- task:
|
97 |
+
type: STS
|
98 |
+
dataset:
|
99 |
+
type: mteb/biosses-sts
|
100 |
+
name: MTEB BIOSSES
|
101 |
+
config: default
|
102 |
+
split: test
|
103 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
104 |
+
metrics:
|
105 |
+
- type: cos_sim_pearson
|
106 |
+
value: 86.01183720167818
|
107 |
+
- type: cos_sim_spearman
|
108 |
+
value: 85.00916590717613
|
109 |
+
- type: euclidean_pearson
|
110 |
+
value: 84.072733561361
|
111 |
+
- type: euclidean_spearman
|
112 |
+
value: 85.00916590717613
|
113 |
+
- type: manhattan_pearson
|
114 |
+
value: 83.89233507343208
|
115 |
+
- type: manhattan_spearman
|
116 |
+
value: 84.87482549674115
|
117 |
+
- task:
|
118 |
+
type: Classification
|
119 |
+
dataset:
|
120 |
+
type: mteb/banking77
|
121 |
+
name: MTEB Banking77Classification
|
122 |
+
config: default
|
123 |
+
split: test
|
124 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
125 |
+
metrics:
|
126 |
+
- type: accuracy
|
127 |
+
value: 86.09415584415584
|
128 |
+
- type: f1
|
129 |
+
value: 86.05173549773973
|
130 |
+
- task:
|
131 |
+
type: Clustering
|
132 |
+
dataset:
|
133 |
+
type: mteb/biorxiv-clustering-p2p
|
134 |
+
name: MTEB BiorxivClusteringP2P
|
135 |
+
config: default
|
136 |
+
split: test
|
137 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
138 |
+
metrics:
|
139 |
+
- type: v_measure
|
140 |
+
value: 40.49773000165541
|
141 |
+
- task:
|
142 |
+
type: Clustering
|
143 |
+
dataset:
|
144 |
+
type: mteb/biorxiv-clustering-s2s
|
145 |
+
name: MTEB BiorxivClusteringS2S
|
146 |
+
config: default
|
147 |
+
split: test
|
148 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
149 |
+
metrics:
|
150 |
+
- type: v_measure
|
151 |
+
value: 36.909633073998876
|
152 |
+
- task:
|
153 |
+
type: Retrieval
|
154 |
+
dataset:
|
155 |
+
type: BeIR/cqadupstack
|
156 |
+
name: MTEB CQADupstackAndroidRetrieval
|
157 |
+
config: default
|
158 |
+
split: test
|
159 |
+
revision: None
|
160 |
+
metrics:
|
161 |
+
- type: ndcg_at_10
|
162 |
+
value: 49.481
|
163 |
+
- task:
|
164 |
+
type: Retrieval
|
165 |
+
dataset:
|
166 |
+
type: BeIR/cqadupstack
|
167 |
+
name: MTEB CQADupstackEnglishRetrieval
|
168 |
+
config: default
|
169 |
+
split: test
|
170 |
+
revision: None
|
171 |
+
metrics:
|
172 |
+
- type: ndcg_at_10
|
173 |
+
value: 47.449999999999996
|
174 |
+
- task:
|
175 |
+
type: Retrieval
|
176 |
+
dataset:
|
177 |
+
type: BeIR/cqadupstack
|
178 |
+
name: MTEB CQADupstackGamingRetrieval
|
179 |
+
config: default
|
180 |
+
split: test
|
181 |
+
revision: None
|
182 |
+
metrics:
|
183 |
+
- type: ndcg_at_10
|
184 |
+
value: 59.227
|
185 |
+
- task:
|
186 |
+
type: Retrieval
|
187 |
+
dataset:
|
188 |
+
type: BeIR/cqadupstack
|
189 |
+
name: MTEB CQADupstackGisRetrieval
|
190 |
+
config: default
|
191 |
+
split: test
|
192 |
+
revision: None
|
193 |
+
metrics:
|
194 |
+
- type: ndcg_at_10
|
195 |
+
value: 37.729
|
196 |
+
- task:
|
197 |
+
type: Retrieval
|
198 |
+
dataset:
|
199 |
+
type: BeIR/cqadupstack
|
200 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
201 |
+
config: default
|
202 |
+
split: test
|
203 |
+
revision: None
|
204 |
+
metrics:
|
205 |
+
- type: ndcg_at_10
|
206 |
+
value: 29.673
|
207 |
+
- task:
|
208 |
+
type: Retrieval
|
209 |
+
dataset:
|
210 |
+
type: BeIR/cqadupstack
|
211 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
212 |
+
config: default
|
213 |
+
split: test
|
214 |
+
revision: None
|
215 |
+
metrics:
|
216 |
+
- type: ndcg_at_10
|
217 |
+
value: 44.278
|
218 |
+
- task:
|
219 |
+
type: Retrieval
|
220 |
+
dataset:
|
221 |
+
type: BeIR/cqadupstack
|
222 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
223 |
+
config: default
|
224 |
+
split: test
|
225 |
+
revision: None
|
226 |
+
metrics:
|
227 |
+
- type: ndcg_at_10
|
228 |
+
value: 43.218
|
229 |
+
- task:
|
230 |
+
type: Retrieval
|
231 |
+
dataset:
|
232 |
+
type: BeIR/cqadupstack
|
233 |
+
name: MTEB CQADupstackRetrieval
|
234 |
+
config: default
|
235 |
+
split: test
|
236 |
+
revision: None
|
237 |
+
metrics:
|
238 |
+
- type: ndcg_at_10
|
239 |
+
value: 40.63741666666667
|
240 |
+
- task:
|
241 |
+
type: Retrieval
|
242 |
+
dataset:
|
243 |
+
type: BeIR/cqadupstack
|
244 |
+
name: MTEB CQADupstackStatsRetrieval
|
245 |
+
config: default
|
246 |
+
split: test
|
247 |
+
revision: None
|
248 |
+
metrics:
|
249 |
+
- type: ndcg_at_10
|
250 |
+
value: 33.341
|
251 |
+
- task:
|
252 |
+
type: Retrieval
|
253 |
+
dataset:
|
254 |
+
type: BeIR/cqadupstack
|
255 |
+
name: MTEB CQADupstackTexRetrieval
|
256 |
+
config: default
|
257 |
+
split: test
|
258 |
+
revision: None
|
259 |
+
metrics:
|
260 |
+
- type: ndcg_at_10
|
261 |
+
value: 29.093999999999998
|
262 |
+
- task:
|
263 |
+
type: Retrieval
|
264 |
+
dataset:
|
265 |
+
type: BeIR/cqadupstack
|
266 |
+
name: MTEB CQADupstackUnixRetrieval
|
267 |
+
config: default
|
268 |
+
split: test
|
269 |
+
revision: None
|
270 |
+
metrics:
|
271 |
+
- type: ndcg_at_10
|
272 |
+
value: 40.801
|
273 |
+
- task:
|
274 |
+
type: Retrieval
|
275 |
+
dataset:
|
276 |
+
type: BeIR/cqadupstack
|
277 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
278 |
+
config: default
|
279 |
+
split: test
|
280 |
+
revision: None
|
281 |
+
metrics:
|
282 |
+
- type: ndcg_at_10
|
283 |
+
value: 40.114
|
284 |
+
- task:
|
285 |
+
type: Retrieval
|
286 |
+
dataset:
|
287 |
+
type: BeIR/cqadupstack
|
288 |
+
name: MTEB CQADupstackWordpressRetrieval
|
289 |
+
config: default
|
290 |
+
split: test
|
291 |
+
revision: None
|
292 |
+
metrics:
|
293 |
+
- type: ndcg_at_10
|
294 |
+
value: 33.243
|
295 |
+
- task:
|
296 |
+
type: Retrieval
|
297 |
+
dataset:
|
298 |
+
type: climate-fever
|
299 |
+
name: MTEB ClimateFEVER
|
300 |
+
config: default
|
301 |
+
split: test
|
302 |
+
revision: None
|
303 |
+
metrics:
|
304 |
+
- type: ndcg_at_10
|
305 |
+
value: 29.958000000000002
|
306 |
+
- task:
|
307 |
+
type: Retrieval
|
308 |
+
dataset:
|
309 |
+
type: dbpedia-entity
|
310 |
+
name: MTEB DBPedia
|
311 |
+
config: default
|
312 |
+
split: test
|
313 |
+
revision: None
|
314 |
+
metrics:
|
315 |
+
- type: ndcg_at_10
|
316 |
+
value: 41.004000000000005
|
317 |
+
- task:
|
318 |
+
type: Classification
|
319 |
+
dataset:
|
320 |
+
type: mteb/emotion
|
321 |
+
name: MTEB EmotionClassification
|
322 |
+
config: default
|
323 |
+
split: test
|
324 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
325 |
+
metrics:
|
326 |
+
- type: accuracy
|
327 |
+
value: 48.150000000000006
|
328 |
+
- type: f1
|
329 |
+
value: 43.69803436468346
|
330 |
+
- task:
|
331 |
+
type: Retrieval
|
332 |
+
dataset:
|
333 |
+
type: fever
|
334 |
+
name: MTEB FEVER
|
335 |
+
config: default
|
336 |
+
split: test
|
337 |
+
revision: None
|
338 |
+
metrics:
|
339 |
+
- type: ndcg_at_10
|
340 |
+
value: 88.532
|
341 |
+
- task:
|
342 |
+
type: Retrieval
|
343 |
+
dataset:
|
344 |
+
type: fiqa
|
345 |
+
name: MTEB FiQA2018
|
346 |
+
config: default
|
347 |
+
split: test
|
348 |
+
revision: None
|
349 |
+
metrics:
|
350 |
+
- type: ndcg_at_10
|
351 |
+
value: 44.105
|
352 |
+
- task:
|
353 |
+
type: Retrieval
|
354 |
+
dataset:
|
355 |
+
type: hotpotqa
|
356 |
+
name: MTEB HotpotQA
|
357 |
+
config: default
|
358 |
+
split: test
|
359 |
+
revision: None
|
360 |
+
metrics:
|
361 |
+
- type: ndcg_at_10
|
362 |
+
value: 70.612
|
363 |
+
- task:
|
364 |
+
type: Classification
|
365 |
+
dataset:
|
366 |
+
type: mteb/imdb
|
367 |
+
name: MTEB ImdbClassification
|
368 |
+
config: default
|
369 |
+
split: test
|
370 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
371 |
+
metrics:
|
372 |
+
- type: accuracy
|
373 |
+
value: 93.9672
|
374 |
+
- type: ap
|
375 |
+
value: 90.72947025321227
|
376 |
+
- type: f1
|
377 |
+
value: 93.96271599852622
|
378 |
+
- task:
|
379 |
+
type: Retrieval
|
380 |
+
dataset:
|
381 |
+
type: msmarco
|
382 |
+
name: MTEB MSMARCO
|
383 |
+
config: default
|
384 |
+
split: test
|
385 |
+
revision: None
|
386 |
+
metrics:
|
387 |
+
- type: ndcg_at_10
|
388 |
+
value: 43.447
|
389 |
+
- task:
|
390 |
+
type: Classification
|
391 |
+
dataset:
|
392 |
+
type: mteb/mtop_domain
|
393 |
+
name: MTEB MTOPDomainClassification (en)
|
394 |
+
config: en
|
395 |
+
split: test
|
396 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
397 |
+
metrics:
|
398 |
+
- type: accuracy
|
399 |
+
value: 94.92476060191517
|
400 |
+
- type: f1
|
401 |
+
value: 94.69383758972194
|
402 |
+
- task:
|
403 |
+
type: Classification
|
404 |
+
dataset:
|
405 |
+
type: mteb/mtop_intent
|
406 |
+
name: MTEB MTOPIntentClassification (en)
|
407 |
+
config: en
|
408 |
+
split: test
|
409 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
410 |
+
metrics:
|
411 |
+
- type: accuracy
|
412 |
+
value: 78.8873689010488
|
413 |
+
- type: f1
|
414 |
+
value: 62.537485052253885
|
415 |
+
- task:
|
416 |
+
type: Classification
|
417 |
+
dataset:
|
418 |
+
type: mteb/amazon_massive_intent
|
419 |
+
name: MTEB MassiveIntentClassification (en)
|
420 |
+
config: en
|
421 |
+
split: test
|
422 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
423 |
+
metrics:
|
424 |
+
- type: accuracy
|
425 |
+
value: 74.51244115669132
|
426 |
+
- type: f1
|
427 |
+
value: 72.40074466830153
|
428 |
+
- task:
|
429 |
+
type: Classification
|
430 |
+
dataset:
|
431 |
+
type: mteb/amazon_massive_scenario
|
432 |
+
name: MTEB MassiveScenarioClassification (en)
|
433 |
+
config: en
|
434 |
+
split: test
|
435 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
436 |
+
metrics:
|
437 |
+
- type: accuracy
|
438 |
+
value: 79.00470746469401
|
439 |
+
- type: f1
|
440 |
+
value: 79.03758200183096
|
441 |
+
- task:
|
442 |
+
type: Clustering
|
443 |
+
dataset:
|
444 |
+
type: mteb/medrxiv-clustering-p2p
|
445 |
+
name: MTEB MedrxivClusteringP2P
|
446 |
+
config: default
|
447 |
+
split: test
|
448 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
449 |
+
metrics:
|
450 |
+
- type: v_measure
|
451 |
+
value: 36.183215937303736
|
452 |
+
- task:
|
453 |
+
type: Clustering
|
454 |
+
dataset:
|
455 |
+
type: mteb/medrxiv-clustering-s2s
|
456 |
+
name: MTEB MedrxivClusteringS2S
|
457 |
+
config: default
|
458 |
+
split: test
|
459 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
460 |
+
metrics:
|
461 |
+
- type: v_measure
|
462 |
+
value: 33.443759055792135
|
463 |
+
- task:
|
464 |
+
type: Reranking
|
465 |
+
dataset:
|
466 |
+
type: mteb/mind_small
|
467 |
+
name: MTEB MindSmallReranking
|
468 |
+
config: default
|
469 |
+
split: test
|
470 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
471 |
+
metrics:
|
472 |
+
- type: map
|
473 |
+
value: 32.58713095176127
|
474 |
+
- type: mrr
|
475 |
+
value: 33.7326038566206
|
476 |
+
- task:
|
477 |
+
type: Retrieval
|
478 |
+
dataset:
|
479 |
+
type: nfcorpus
|
480 |
+
name: MTEB NFCorpus
|
481 |
+
config: default
|
482 |
+
split: test
|
483 |
+
revision: None
|
484 |
+
metrics:
|
485 |
+
- type: ndcg_at_10
|
486 |
+
value: 36.417
|
487 |
+
- task:
|
488 |
+
type: Retrieval
|
489 |
+
dataset:
|
490 |
+
type: nq
|
491 |
+
name: MTEB NQ
|
492 |
+
config: default
|
493 |
+
split: test
|
494 |
+
revision: None
|
495 |
+
metrics:
|
496 |
+
- type: ndcg_at_10
|
497 |
+
value: 63.415
|
498 |
+
- task:
|
499 |
+
type: Retrieval
|
500 |
+
dataset:
|
501 |
+
type: quora
|
502 |
+
name: MTEB QuoraRetrieval
|
503 |
+
config: default
|
504 |
+
split: test
|
505 |
+
revision: None
|
506 |
+
metrics:
|
507 |
+
- type: ndcg_at_10
|
508 |
+
value: 88.924
|
509 |
+
- task:
|
510 |
+
type: Clustering
|
511 |
+
dataset:
|
512 |
+
type: mteb/reddit-clustering
|
513 |
+
name: MTEB RedditClustering
|
514 |
+
config: default
|
515 |
+
split: test
|
516 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
517 |
+
metrics:
|
518 |
+
- type: v_measure
|
519 |
+
value: 58.10997801688676
|
520 |
+
- task:
|
521 |
+
type: Clustering
|
522 |
+
dataset:
|
523 |
+
type: mteb/reddit-clustering-p2p
|
524 |
+
name: MTEB RedditClusteringP2P
|
525 |
+
config: default
|
526 |
+
split: test
|
527 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
528 |
+
metrics:
|
529 |
+
- type: v_measure
|
530 |
+
value: 65.02444843766075
|
531 |
+
- task:
|
532 |
+
type: Retrieval
|
533 |
+
dataset:
|
534 |
+
type: scidocs
|
535 |
+
name: MTEB SCIDOCS
|
536 |
+
config: default
|
537 |
+
split: test
|
538 |
+
revision: None
|
539 |
+
metrics:
|
540 |
+
- type: ndcg_at_10
|
541 |
+
value: 19.339000000000002
|
542 |
+
- task:
|
543 |
+
type: STS
|
544 |
+
dataset:
|
545 |
+
type: mteb/sickr-sts
|
546 |
+
name: MTEB SICK-R
|
547 |
+
config: default
|
548 |
+
split: test
|
549 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
550 |
+
metrics:
|
551 |
+
- type: cos_sim_pearson
|
552 |
+
value: 86.61540076033945
|
553 |
+
- type: cos_sim_spearman
|
554 |
+
value: 82.1820253476181
|
555 |
+
- type: euclidean_pearson
|
556 |
+
value: 83.73901215845989
|
557 |
+
- type: euclidean_spearman
|
558 |
+
value: 82.182021064594
|
559 |
+
- type: manhattan_pearson
|
560 |
+
value: 83.76685139192031
|
561 |
+
- type: manhattan_spearman
|
562 |
+
value: 82.14074705306663
|
563 |
+
- task:
|
564 |
+
type: STS
|
565 |
+
dataset:
|
566 |
+
type: mteb/sts12-sts
|
567 |
+
name: MTEB STS12
|
568 |
+
config: default
|
569 |
+
split: test
|
570 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
571 |
+
metrics:
|
572 |
+
- type: cos_sim_pearson
|
573 |
+
value: 85.62241109228789
|
574 |
+
- type: cos_sim_spearman
|
575 |
+
value: 77.62042143066208
|
576 |
+
- type: euclidean_pearson
|
577 |
+
value: 82.77237785274072
|
578 |
+
- type: euclidean_spearman
|
579 |
+
value: 77.62042142290566
|
580 |
+
- type: manhattan_pearson
|
581 |
+
value: 82.70945589621266
|
582 |
+
- type: manhattan_spearman
|
583 |
+
value: 77.57245632826351
|
584 |
+
- task:
|
585 |
+
type: STS
|
586 |
+
dataset:
|
587 |
+
type: mteb/sts13-sts
|
588 |
+
name: MTEB STS13
|
589 |
+
config: default
|
590 |
+
split: test
|
591 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
592 |
+
metrics:
|
593 |
+
- type: cos_sim_pearson
|
594 |
+
value: 84.8307075352031
|
595 |
+
- type: cos_sim_spearman
|
596 |
+
value: 85.15620774806095
|
597 |
+
- type: euclidean_pearson
|
598 |
+
value: 84.21956724564915
|
599 |
+
- type: euclidean_spearman
|
600 |
+
value: 85.15620774806095
|
601 |
+
- type: manhattan_pearson
|
602 |
+
value: 84.0677597021641
|
603 |
+
- type: manhattan_spearman
|
604 |
+
value: 85.02572172855729
|
605 |
+
- task:
|
606 |
+
type: STS
|
607 |
+
dataset:
|
608 |
+
type: mteb/sts14-sts
|
609 |
+
name: MTEB STS14
|
610 |
+
config: default
|
611 |
+
split: test
|
612 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
613 |
+
metrics:
|
614 |
+
- type: cos_sim_pearson
|
615 |
+
value: 83.33749463516592
|
616 |
+
- type: cos_sim_spearman
|
617 |
+
value: 80.01967438481185
|
618 |
+
- type: euclidean_pearson
|
619 |
+
value: 82.16884494022196
|
620 |
+
- type: euclidean_spearman
|
621 |
+
value: 80.01967218194336
|
622 |
+
- type: manhattan_pearson
|
623 |
+
value: 81.94431512413773
|
624 |
+
- type: manhattan_spearman
|
625 |
+
value: 79.81636247503731
|
626 |
+
- task:
|
627 |
+
type: STS
|
628 |
+
dataset:
|
629 |
+
type: mteb/sts15-sts
|
630 |
+
name: MTEB STS15
|
631 |
+
config: default
|
632 |
+
split: test
|
633 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
634 |
+
metrics:
|
635 |
+
- type: cos_sim_pearson
|
636 |
+
value: 88.2070761097028
|
637 |
+
- type: cos_sim_spearman
|
638 |
+
value: 88.92297656560552
|
639 |
+
- type: euclidean_pearson
|
640 |
+
value: 87.95961374550303
|
641 |
+
- type: euclidean_spearman
|
642 |
+
value: 88.92298798854765
|
643 |
+
- type: manhattan_pearson
|
644 |
+
value: 87.85515971478168
|
645 |
+
- type: manhattan_spearman
|
646 |
+
value: 88.8100644762342
|
647 |
+
- task:
|
648 |
+
type: STS
|
649 |
+
dataset:
|
650 |
+
type: mteb/sts16-sts
|
651 |
+
name: MTEB STS16
|
652 |
+
config: default
|
653 |
+
split: test
|
654 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
655 |
+
metrics:
|
656 |
+
- type: cos_sim_pearson
|
657 |
+
value: 85.48103354546488
|
658 |
+
- type: cos_sim_spearman
|
659 |
+
value: 86.91850928862898
|
660 |
+
- type: euclidean_pearson
|
661 |
+
value: 86.06766986527145
|
662 |
+
- type: euclidean_spearman
|
663 |
+
value: 86.91850928862898
|
664 |
+
- type: manhattan_pearson
|
665 |
+
value: 86.02705585360717
|
666 |
+
- type: manhattan_spearman
|
667 |
+
value: 86.86666545434721
|
668 |
+
- task:
|
669 |
+
type: STS
|
670 |
+
dataset:
|
671 |
+
type: mteb/sts17-crosslingual-sts
|
672 |
+
name: MTEB STS17 (en-en)
|
673 |
+
config: en-en
|
674 |
+
split: test
|
675 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
676 |
+
metrics:
|
677 |
+
- type: cos_sim_pearson
|
678 |
+
value: 90.30267248880148
|
679 |
+
- type: cos_sim_spearman
|
680 |
+
value: 90.08752166657892
|
681 |
+
- type: euclidean_pearson
|
682 |
+
value: 90.4697525265135
|
683 |
+
- type: euclidean_spearman
|
684 |
+
value: 90.08752166657892
|
685 |
+
- type: manhattan_pearson
|
686 |
+
value: 90.57174978064741
|
687 |
+
- type: manhattan_spearman
|
688 |
+
value: 90.212834942229
|
689 |
+
- task:
|
690 |
+
type: STS
|
691 |
+
dataset:
|
692 |
+
type: mteb/sts22-crosslingual-sts
|
693 |
+
name: MTEB STS22 (en)
|
694 |
+
config: en
|
695 |
+
split: test
|
696 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
697 |
+
metrics:
|
698 |
+
- type: cos_sim_pearson
|
699 |
+
value: 67.10616236380835
|
700 |
+
- type: cos_sim_spearman
|
701 |
+
value: 66.81483164137016
|
702 |
+
- type: euclidean_pearson
|
703 |
+
value: 68.48505128040803
|
704 |
+
- type: euclidean_spearman
|
705 |
+
value: 66.81483164137016
|
706 |
+
- type: manhattan_pearson
|
707 |
+
value: 68.46133268524885
|
708 |
+
- type: manhattan_spearman
|
709 |
+
value: 66.83684227990202
|
710 |
+
- task:
|
711 |
+
type: STS
|
712 |
+
dataset:
|
713 |
+
type: mteb/stsbenchmark-sts
|
714 |
+
name: MTEB STSBenchmark
|
715 |
+
config: default
|
716 |
+
split: test
|
717 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
718 |
+
metrics:
|
719 |
+
- type: cos_sim_pearson
|
720 |
+
value: 87.12768629069949
|
721 |
+
- type: cos_sim_spearman
|
722 |
+
value: 88.78683817318573
|
723 |
+
- type: euclidean_pearson
|
724 |
+
value: 88.47603251297261
|
725 |
+
- type: euclidean_spearman
|
726 |
+
value: 88.78683817318573
|
727 |
+
- type: manhattan_pearson
|
728 |
+
value: 88.46483630890225
|
729 |
+
- type: manhattan_spearman
|
730 |
+
value: 88.76593424921617
|
731 |
+
- task:
|
732 |
+
type: Reranking
|
733 |
+
dataset:
|
734 |
+
type: mteb/scidocs-reranking
|
735 |
+
name: MTEB SciDocsRR
|
736 |
+
config: default
|
737 |
+
split: test
|
738 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
739 |
+
metrics:
|
740 |
+
- type: map
|
741 |
+
value: 84.30886658431281
|
742 |
+
- type: mrr
|
743 |
+
value: 95.5964251797585
|
744 |
+
- task:
|
745 |
+
type: Retrieval
|
746 |
+
dataset:
|
747 |
+
type: scifact
|
748 |
+
name: MTEB SciFact
|
749 |
+
config: default
|
750 |
+
split: test
|
751 |
+
revision: None
|
752 |
+
metrics:
|
753 |
+
- type: ndcg_at_10
|
754 |
+
value: 70.04599999999999
|
755 |
+
- task:
|
756 |
+
type: PairClassification
|
757 |
+
dataset:
|
758 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
759 |
+
name: MTEB SprintDuplicateQuestions
|
760 |
+
config: default
|
761 |
+
split: test
|
762 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
763 |
+
metrics:
|
764 |
+
- type: cos_sim_accuracy
|
765 |
+
value: 99.87524752475248
|
766 |
+
- type: cos_sim_ap
|
767 |
+
value: 96.79160651306724
|
768 |
+
- type: cos_sim_f1
|
769 |
+
value: 93.57798165137615
|
770 |
+
- type: cos_sim_precision
|
771 |
+
value: 95.42619542619542
|
772 |
+
- type: cos_sim_recall
|
773 |
+
value: 91.8
|
774 |
+
- type: dot_accuracy
|
775 |
+
value: 99.87524752475248
|
776 |
+
- type: dot_ap
|
777 |
+
value: 96.79160651306724
|
778 |
+
- type: dot_f1
|
779 |
+
value: 93.57798165137615
|
780 |
+
- type: dot_precision
|
781 |
+
value: 95.42619542619542
|
782 |
+
- type: dot_recall
|
783 |
+
value: 91.8
|
784 |
+
- type: euclidean_accuracy
|
785 |
+
value: 99.87524752475248
|
786 |
+
- type: euclidean_ap
|
787 |
+
value: 96.79160651306724
|
788 |
+
- type: euclidean_f1
|
789 |
+
value: 93.57798165137615
|
790 |
+
- type: euclidean_precision
|
791 |
+
value: 95.42619542619542
|
792 |
+
- type: euclidean_recall
|
793 |
+
value: 91.8
|
794 |
+
- type: manhattan_accuracy
|
795 |
+
value: 99.87326732673267
|
796 |
+
- type: manhattan_ap
|
797 |
+
value: 96.7574606340297
|
798 |
+
- type: manhattan_f1
|
799 |
+
value: 93.45603271983639
|
800 |
+
- type: manhattan_precision
|
801 |
+
value: 95.60669456066945
|
802 |
+
- type: manhattan_recall
|
803 |
+
value: 91.4
|
804 |
+
- type: max_accuracy
|
805 |
+
value: 99.87524752475248
|
806 |
+
- type: max_ap
|
807 |
+
value: 96.79160651306724
|
808 |
+
- type: max_f1
|
809 |
+
value: 93.57798165137615
|
810 |
+
- task:
|
811 |
+
type: Clustering
|
812 |
+
dataset:
|
813 |
+
type: mteb/stackexchange-clustering
|
814 |
+
name: MTEB StackExchangeClustering
|
815 |
+
config: default
|
816 |
+
split: test
|
817 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
818 |
+
metrics:
|
819 |
+
- type: v_measure
|
820 |
+
value: 68.12288811917144
|
821 |
+
- task:
|
822 |
+
type: Clustering
|
823 |
+
dataset:
|
824 |
+
type: mteb/stackexchange-clustering-p2p
|
825 |
+
name: MTEB StackExchangeClusteringP2P
|
826 |
+
config: default
|
827 |
+
split: test
|
828 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
829 |
+
metrics:
|
830 |
+
- type: v_measure
|
831 |
+
value: 35.22267280169542
|
832 |
+
- task:
|
833 |
+
type: Reranking
|
834 |
+
dataset:
|
835 |
+
type: mteb/stackoverflowdupquestions-reranking
|
836 |
+
name: MTEB StackOverflowDupQuestions
|
837 |
+
config: default
|
838 |
+
split: test
|
839 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
840 |
+
metrics:
|
841 |
+
- type: map
|
842 |
+
value: 52.39780995606098
|
843 |
+
- type: mrr
|
844 |
+
value: 53.26826563958916
|
845 |
+
- task:
|
846 |
+
type: Summarization
|
847 |
+
dataset:
|
848 |
+
type: mteb/summeval
|
849 |
+
name: MTEB SummEval
|
850 |
+
config: default
|
851 |
+
split: test
|
852 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
853 |
+
metrics:
|
854 |
+
- type: cos_sim_pearson
|
855 |
+
value: 31.15118979569649
|
856 |
+
- type: cos_sim_spearman
|
857 |
+
value: 30.99428921914572
|
858 |
+
- type: dot_pearson
|
859 |
+
value: 31.151189338601924
|
860 |
+
- type: dot_spearman
|
861 |
+
value: 30.99428921914572
|
862 |
+
- task:
|
863 |
+
type: Retrieval
|
864 |
+
dataset:
|
865 |
+
type: trec-covid
|
866 |
+
name: MTEB TRECCOVID
|
867 |
+
config: default
|
868 |
+
split: test
|
869 |
+
revision: None
|
870 |
+
metrics:
|
871 |
+
- type: ndcg_at_10
|
872 |
+
value: 83.372
|
873 |
+
- task:
|
874 |
+
type: Retrieval
|
875 |
+
dataset:
|
876 |
+
type: webis-touche2020
|
877 |
+
name: MTEB Touche2020
|
878 |
+
config: default
|
879 |
+
split: test
|
880 |
+
revision: None
|
881 |
+
metrics:
|
882 |
+
- type: ndcg_at_10
|
883 |
+
value: 32.698
|
884 |
+
- task:
|
885 |
+
type: Classification
|
886 |
+
dataset:
|
887 |
+
type: mteb/toxic_conversations_50k
|
888 |
+
name: MTEB ToxicConversationsClassification
|
889 |
+
config: default
|
890 |
+
split: test
|
891 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
892 |
+
metrics:
|
893 |
+
- type: accuracy
|
894 |
+
value: 71.1998
|
895 |
+
- type: ap
|
896 |
+
value: 14.646205259325157
|
897 |
+
- type: f1
|
898 |
+
value: 54.96172518137252
|
899 |
+
- task:
|
900 |
+
type: Classification
|
901 |
+
dataset:
|
902 |
+
type: mteb/tweet_sentiment_extraction
|
903 |
+
name: MTEB TweetSentimentExtractionClassification
|
904 |
+
config: default
|
905 |
+
split: test
|
906 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
907 |
+
metrics:
|
908 |
+
- type: accuracy
|
909 |
+
value: 62.176004527447645
|
910 |
+
- type: f1
|
911 |
+
value: 62.48549068096645
|
912 |
+
- task:
|
913 |
+
type: Clustering
|
914 |
+
dataset:
|
915 |
+
type: mteb/twentynewsgroups-clustering
|
916 |
+
name: MTEB TwentyNewsgroupsClustering
|
917 |
+
config: default
|
918 |
+
split: test
|
919 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
920 |
+
metrics:
|
921 |
+
- type: v_measure
|
922 |
+
value: 50.13767789739772
|
923 |
+
- task:
|
924 |
+
type: PairClassification
|
925 |
+
dataset:
|
926 |
+
type: mteb/twittersemeval2015-pairclassification
|
927 |
+
name: MTEB TwitterSemEval2015
|
928 |
+
config: default
|
929 |
+
split: test
|
930 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
931 |
+
metrics:
|
932 |
+
- type: cos_sim_accuracy
|
933 |
+
value: 86.38016331882935
|
934 |
+
- type: cos_sim_ap
|
935 |
+
value: 75.1635976260804
|
936 |
+
- type: cos_sim_f1
|
937 |
+
value: 69.29936305732484
|
938 |
+
- type: cos_sim_precision
|
939 |
+
value: 66.99507389162561
|
940 |
+
- type: cos_sim_recall
|
941 |
+
value: 71.76781002638522
|
942 |
+
- type: dot_accuracy
|
943 |
+
value: 86.38016331882935
|
944 |
+
- type: dot_ap
|
945 |
+
value: 75.16359359202374
|
946 |
+
- type: dot_f1
|
947 |
+
value: 69.29936305732484
|
948 |
+
- type: dot_precision
|
949 |
+
value: 66.99507389162561
|
950 |
+
- type: dot_recall
|
951 |
+
value: 71.76781002638522
|
952 |
+
- type: euclidean_accuracy
|
953 |
+
value: 86.38016331882935
|
954 |
+
- type: euclidean_ap
|
955 |
+
value: 75.16360246558416
|
956 |
+
- type: euclidean_f1
|
957 |
+
value: 69.29936305732484
|
958 |
+
- type: euclidean_precision
|
959 |
+
value: 66.99507389162561
|
960 |
+
- type: euclidean_recall
|
961 |
+
value: 71.76781002638522
|
962 |
+
- type: manhattan_accuracy
|
963 |
+
value: 86.27883411813792
|
964 |
+
- type: manhattan_ap
|
965 |
+
value: 75.02872038741897
|
966 |
+
- type: manhattan_f1
|
967 |
+
value: 69.29256284011403
|
968 |
+
- type: manhattan_precision
|
969 |
+
value: 68.07535641547861
|
970 |
+
- type: manhattan_recall
|
971 |
+
value: 70.55408970976254
|
972 |
+
- type: max_accuracy
|
973 |
+
value: 86.38016331882935
|
974 |
+
- type: max_ap
|
975 |
+
value: 75.16360246558416
|
976 |
+
- type: max_f1
|
977 |
+
value: 69.29936305732484
|
978 |
+
- task:
|
979 |
+
type: PairClassification
|
980 |
+
dataset:
|
981 |
+
type: mteb/twitterurlcorpus-pairclassification
|
982 |
+
name: MTEB TwitterURLCorpus
|
983 |
+
config: default
|
984 |
+
split: test
|
985 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
986 |
+
metrics:
|
987 |
+
- type: cos_sim_accuracy
|
988 |
+
value: 89.39729110878255
|
989 |
+
- type: cos_sim_ap
|
990 |
+
value: 86.48560260020555
|
991 |
+
- type: cos_sim_f1
|
992 |
+
value: 79.35060602690982
|
993 |
+
- type: cos_sim_precision
|
994 |
+
value: 76.50632549496105
|
995 |
+
- type: cos_sim_recall
|
996 |
+
value: 82.41453649522637
|
997 |
+
- type: dot_accuracy
|
998 |
+
value: 89.39729110878255
|
999 |
+
- type: dot_ap
|
1000 |
+
value: 86.48559829915334
|
1001 |
+
- type: dot_f1
|
1002 |
+
value: 79.35060602690982
|
1003 |
+
- type: dot_precision
|
1004 |
+
value: 76.50632549496105
|
1005 |
+
- type: dot_recall
|
1006 |
+
value: 82.41453649522637
|
1007 |
+
- type: euclidean_accuracy
|
1008 |
+
value: 89.39729110878255
|
1009 |
+
- type: euclidean_ap
|
1010 |
+
value: 86.48559993122497
|
1011 |
+
- type: euclidean_f1
|
1012 |
+
value: 79.35060602690982
|
1013 |
+
- type: euclidean_precision
|
1014 |
+
value: 76.50632549496105
|
1015 |
+
- type: euclidean_recall
|
1016 |
+
value: 82.41453649522637
|
1017 |
+
- type: manhattan_accuracy
|
1018 |
+
value: 89.36042224550782
|
1019 |
+
- type: manhattan_ap
|
1020 |
+
value: 86.47238558562499
|
1021 |
+
- type: manhattan_f1
|
1022 |
+
value: 79.24500641378047
|
1023 |
+
- type: manhattan_precision
|
1024 |
+
value: 75.61726236273344
|
1025 |
+
- type: manhattan_recall
|
1026 |
+
value: 83.23837388358484
|
1027 |
+
- type: max_accuracy
|
1028 |
+
value: 89.39729110878255
|
1029 |
+
- type: max_ap
|
1030 |
+
value: 86.48560260020555
|
1031 |
+
- type: max_f1
|
1032 |
+
value: 79.35060602690982
|
1033 |
+
---
|
1034 |
+
|
1035 |
+
|
1036 |
+
# Cohere embed-multilingual-v3.0
|
1037 |
+
|
1038 |
+
This repository contains the tokenizer for the Cohere `embed-multilingual-v3.0` model.
|
1039 |
+
|
1040 |
+
You can use the embedding model either via the Cohere API, AWS SageMaker or in your private deployments.
|
1041 |
+
|
1042 |
+
## Usage Cohere API
|
1043 |
+
|
1044 |
+
The following code snippet shows the usage of the Cohere API. Install the cohere SDK via:
|
1045 |
+
```
|
1046 |
+
pip install -U cohere
|
1047 |
+
```
|
1048 |
+
|
1049 |
+
Get your free API key on: www.cohere.com
|
1050 |
+
|
1051 |
+
|
1052 |
+
```python
|
1053 |
+
# This snippet shows and example how to use the Cohere Embed V3 models for semantic search.
|
1054 |
+
# Make sure to have the Cohere SDK in at least v4.30 install: pip install -U cohere
|
1055 |
+
# Get your API key from: www.cohere.com
|
1056 |
+
import cohere
|
1057 |
+
import numpy as np
|
1058 |
+
|
1059 |
+
cohere_key = "{YOUR_COHERE_API_KEY}" #Get your API key from www.cohere.com
|
1060 |
+
co = cohere.Client(cohere_key)
|
1061 |
+
|
1062 |
+
docs = ["The capital of France is Paris",
|
1063 |
+
"PyTorch is a machine learning framework based on the Torch library.",
|
1064 |
+
"The average cat lifespan is between 13-17 years"]
|
1065 |
+
|
1066 |
+
|
1067 |
+
#Encode your documents with input type 'search_document'
|
1068 |
+
doc_emb = co.embed(docs, input_type="search_document", model="embed-multilingual-v3.0").embeddings
|
1069 |
+
doc_emb = np.asarray(doc_emb)
|
1070 |
+
|
1071 |
+
|
1072 |
+
#Encode your query with input type 'search_query'
|
1073 |
+
query = "What is Pytorch"
|
1074 |
+
query_emb = co.embed([query], input_type="search_query", model="embed-multilingual-v3.0").embeddings
|
1075 |
+
query_emb = np.asarray(query_emb)
|
1076 |
+
query_emb.shape
|
1077 |
+
|
1078 |
+
#Compute the dot product between query embedding and document embedding
|
1079 |
+
scores = np.dot(query_emb, doc_emb.T)[0]
|
1080 |
+
|
1081 |
+
#Find the highest scores
|
1082 |
+
max_idx = np.argsort(-scores)
|
1083 |
+
|
1084 |
+
print(f"Query: {query}")
|
1085 |
+
for idx in max_idx:
|
1086 |
+
print(f"Score: {scores[idx]:.2f}")
|
1087 |
+
print(docs[idx])
|
1088 |
+
print("--------")
|
1089 |
+
```
|
1090 |
+
|
1091 |
+
## Usage AWS SageMaker
|
1092 |
+
The embedding model can be privately deployed in your AWS Cloud using our [AWS SageMaker marketplace offering](https://aws.amazon.com/marketplace/pp/prodview-z6huxszcqc25i). It runs privately in your VPC, with latencies as low as 5ms for query encoding.
|
1093 |
+
|
1094 |
+
## Usage AWS Bedrock
|
1095 |
+
Soon the model will also be available via AWS Bedrock. Stay tuned
|
1096 |
+
|
1097 |
+
## Private Deployment
|
1098 |
+
You want to run the model on your own hardware? [Contact Sales](https://cohere.com/contact-sales) to learn more.
|
1099 |
+
|
1100 |
+
## Supported Languages
|
1101 |
+
This model was trained on nearly 1B English training pairs and nearly 0.5B Non-English training pairs from 100+ languages.
|
1102 |
+
|
1103 |
+
Evaluation results can be found in the [Embed V3.0 Benchmark Results spreadsheet](https://docs.google.com/spreadsheets/d/1w7gnHWMDBdEUrmHgSfDnGHJgVQE5aOiXCCwO3uNH_mI/edit?usp=sharing).
|
config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"n_positions": 512,
|
3 |
+
"hidden_dim": 1024
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62c24cdc13d4c9952d63718d6c9fa4c287974249e16b7ade6d5a85e7bbb75626
|
3 |
+
size 17082660
|
tokenizer_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": {
|
7 |
+
"__type": "AddedToken",
|
8 |
+
"content": "<mask>",
|
9 |
+
"lstrip": true,
|
10 |
+
"normalized": true,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"model_max_length": 512,
|
15 |
+
"name_or_path": "../sbert_models/cohere-embed-multilingual-v3.0-not-rotated/",
|
16 |
+
"pad_token": "<pad>",
|
17 |
+
"sep_token": "</s>",
|
18 |
+
"special_tokens_map_file": "../sbert_models/cohere-embed-multilingual-v3.0-not-rotated/special_tokens_map.json",
|
19 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
20 |
+
"unk_token": "<unk>"
|
21 |
+
}
|