valhalla commited on
Commit
25f7be8
1 Parent(s): d9db069

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -0
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - pytorch
5
+ - diffusers
6
+ - super-resolution
7
+ - diffusion-super-resolution
8
+ ---
9
+
10
+ # Latent Diffusion Models (LDM) for super-resolution
11
+
12
+ **Paper**: [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
13
+
14
+ **Abstract**:
15
+
16
+ *By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.*
17
+
18
+ **Authors**
19
+
20
+ *Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer*
21
+
22
+ ## Usage
23
+
24
+ ### Inference with a pipeline
25
+
26
+ ```python
27
+ !pip install diffusers
28
+
29
+ import requests
30
+ from PIL import Image
31
+ from io import BytesIO
32
+ from diffusers import LDMSuperResolutionPipeline
33
+
34
+ model_id = "CompVis/ldm-super-resolution-4x-openimages"
35
+
36
+ # load model and scheduler
37
+ pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id)
38
+ pipeline = pipe.to(device)
39
+
40
+ # let's download an image
41
+ url = "https://user-images.githubusercontent.com/38061659/199705896-b48e17b8-b231-47cd-a270-4ffa5a93fa3e.png"
42
+ response = requests.get(url)
43
+ low_res_img = Image.open(BytesIO(response.content)).convert("RGB")
44
+ low_res_img = low_res_img((128, 128))
45
+
46
+ # run pipeline in inference (sample random noise and denoise)
47
+ upscaled_image = pipeline(low_res_img, num_inference_steps=100, eta=1).images[0]
48
+ # save image
49
+ upscaled_image.save("ldm_generated_image.png")
50
+ ```