--- license: mit tags: - generated_from_trainer datasets: - lg-ner metrics: - precision - recall - f1 - accuracy model-index: - name: luganda-ner-v2 results: - task: name: Token Classification type: token-classification dataset: name: lg-ner type: lg-ner config: lug split: test args: lug metrics: - name: Precision type: precision value: 0.79182156133829 - name: Recall type: recall value: 0.7842415316642121 - name: F1 type: f1 value: 0.788013318534961 - name: Accuracy type: accuracy value: 0.9559346774929295 --- # luganda-ner-v2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the lg-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.3199 - Precision: 0.7918 - Recall: 0.7842 - F1: 0.7880 - Accuracy: 0.9559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 261 | 0.2380 | 0.7942 | 0.7106 | 0.7501 | 0.9526 | | 0.0954 | 2.0 | 522 | 0.2345 | 0.7954 | 0.7872 | 0.7913 | 0.9558 | | 0.0954 | 3.0 | 783 | 0.2560 | 0.8168 | 0.7518 | 0.7830 | 0.9555 | | 0.0562 | 4.0 | 1044 | 0.2815 | 0.7261 | 0.7791 | 0.7517 | 0.9477 | | 0.0562 | 5.0 | 1305 | 0.2738 | 0.7744 | 0.8012 | 0.7875 | 0.9566 | | 0.0345 | 6.0 | 1566 | 0.2951 | 0.8083 | 0.7732 | 0.7904 | 0.9556 | | 0.0345 | 7.0 | 1827 | 0.3026 | 0.7741 | 0.7872 | 0.7806 | 0.9547 | | 0.0215 | 8.0 | 2088 | 0.3062 | 0.8159 | 0.7636 | 0.7889 | 0.9563 | | 0.0215 | 9.0 | 2349 | 0.3157 | 0.7959 | 0.7813 | 0.7886 | 0.9563 | | 0.017 | 10.0 | 2610 | 0.3199 | 0.7918 | 0.7842 | 0.7880 | 0.9559 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2