zhuqi commited on
Commit
036a187
1 Parent(s): 052125d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ license: apache-2.0
5
+ tags:
6
+ - mt5-small
7
+ - text2text-generation
8
+ - natural language generation
9
+ - conversational system
10
+ - task-oriented dialog
11
+ datasets:
12
+ - ConvLab/crosswoz
13
+ metrics:
14
+ - Slot Error Rate
15
+ - sacrebleu
16
+
17
+ model-index:
18
+ - name: mt5-small-nlg-all-crosswoz
19
+ results:
20
+ - task:
21
+ type: text2text-generation
22
+ name: natural language generation
23
+ dataset:
24
+ type: ConvLab/crosswoz
25
+ name: CrossWOZ
26
+ split: test
27
+ revision: 4a3e56082543ed9eecb9c76ef5eadc1aa0cc5ca0
28
+ metrics:
29
+ - type: Slot Error Rate
30
+ value: 6.9
31
+ name: SER
32
+ - type: sacrebleu
33
+ value: 21.0
34
+ name: BLEU
35
+
36
+ widget:
37
+ - text: "[Inform][酒店]([价格][100-200元],[评分][5分]);[greet][General]([][]);[Request][酒店]([名称][])\n\nuser: "
38
+ - text: "[Recommend][酒店]([名称][北京京仪大酒店],[名称][北京贵都大酒店]);[Inform][酒店]([酒店设施-健身房-否][]);[NoOffer][酒店]([][])\n\nsystem: "
39
+
40
+ inference:
41
+ parameters:
42
+ max_length: 100
43
+
44
+ ---
45
+
46
+ # mt5-small-nlg-all-crosswoz
47
+
48
+ This model is a fine-tuned version of [mt5-small](https://huggingface.co/mt5-small) on [CrossWOZ](https://huggingface.co/datasets/ConvLab/crosswoz) both user and system utterances.
49
+
50
+ Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 0.001
58
+ - train_batch_size: 32
59
+ - eval_batch_size: 16
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 8
62
+ - total_train_batch_size: 256
63
+ - optimizer: Adafactor
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 10.0
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.20.1
70
+ - Pytorch 1.11.0+cu102
71
+ - Datasets 2.3.2
72
+ - Tokenizers 0.12.1