{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6b03c196c0>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVlQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLB4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSweFlIwBQ5R0lFKUjARoaWdolGgSKJYcAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLB4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYHAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLB4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYHAAAAAAAAAAAAAAAAAACUaCFLB4WUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [ 7 ], "low": "[-inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False]", "bounded_above": "[False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 2, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 16, "num_timesteps": 8011776, "_total_timesteps": 8000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673580497998520985, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "_last_obs": { ":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMddt0EN1rS9HXe9QDmikEHD9RBCAAAIQgAALELcY9lBwCcqPbnHckFHOA1BAABcQgAAQEEAAKhBATbfQcqPhz0BNq9B9k8GQM3M7EEAAEBBAACoQY56s0EIyX++N+qtQHKFlEFmZkZBAADoQQAAGEIg2LpBJPuePkGwFUG/T2pBPQovQgAA2EEAABBC0w6dQbwgmL2lHRpBW+JlQQrXoz8AAPhBAAAgQm8P/UE+CWC93R5qQSPhFUEUrgdBAAC4QQAAAEK+K85BDmeCvntXPEGFqENBSOG6QAAAUEEAALBBlKOnQR8qzD4oRz9B2LhAQXE9akEAAFBBAACwQepClkHSBJo7TRcyQBa9qUH2KFxAAADAQQAABEJZS7JB+WoIPWQtqUCntJVBw/W4QQAA2EEAABBCdyu3QRyEbT7arbxAidSQQa5HHUIAANhBAAAQQusAkEH0n8m+1gFAQSr+P0EAAKBBAAC4QQAAAEI9eZJBy2bLvXryREGGDTtBAAAAQAAAyEEAAAhCndG9Qbc2LT47oytBxVxUQUjhwkEAAAxCAAAwQki60UFxjv+9j3QTQXGLbEE9Cv9BAADgQQAAFEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLB4aUjAFDlHSUUpQu" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVKQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQAAAAAAAAACMAWyUSzGMAXSUR0DVRd6IInjRdX2UKGgGR0BEAAAAAAAAaAdNDAFoCEdA1UXhEX+ERXV9lChoBkdAUIAAAAAAAGgHTZgBaAhHQNVF5ijtXxR1fZQoaAZHQGjAAAAAAABoB02JBGgIR0DVRecEA5q/dX2UKGgGR0BwUAAAAAAAaAdN5QVoCEdA1UXtEM9bHXV9lChoBkdAfVAAAAAAAGgHTY8KaAhHQNVF73iNsFd1fZQoaAZHQD8AAAAAAABoB0vTaAhHQNVHkbl7tzF1fZQoaAZHQDcAAAAAAABoB0unaAhHQNVHkJJK8L91fZQoaAZHQGNgAAAAAABoB02VA2gIR0DVR6H/hl19dX2UKGgGR0BcAAAAAAAAaAdNpAJoCEdA1Uer3qiXY3V9lChoBkdAbsAAAAAAAGgHTZ0FaAhHQNVHtfOhTOx1fZQoaAZHQDMAAAAAAABoB0uNaAhHQNVHt8UEgW91fZQoaAZHQFtAAAAAAABoB02LAmgIR0DVR8gjAzpHdX2UKGgGR0BwYAAAAAAAaAdN7gVoCEdA1UfLsny/bnV9lChoBkdAYAAAAAAAAGgHTfoCaAhHQNVHz4oqkM11fZQoaAZHQFWAAAAAAABoB00SAmgIR0DVR9K9TP0JdX2UKGgGR0BbQAAAAAAAaAdNkAJoCEdA1UfjuIAOrnV9lChoBkdAX8AAAAAAAGgHTfUCaAhHQNVH5YFV1fV1fZQoaAZHQGIgAAAAAABoB01hA2gIR0DVR/HrE9+xdX2UKGgGR0BEAAAAAAAAaAdNDwFoCEdA1Ufy87p3YHV9lChoBkdAZQAAAAAAAGgHTeADaAhHQNVIAe2RaHN1fZQoaAZHQDwAAAAAAABoB0vIaAhHQNVIIYVEd/91fZQoaAZHQF/AAAAAAABoB03zAmgIR0DVSCLvG6wudX2UKGgGR0BYAAAAAAAAaAdNRgJoCEdA1UgrqIacZ3V9lChoBkdAU0AAAAAAAGgHTdwBaAhHQNVJ2R0uDjB1fZQoaAZHQGFgAAAAAABoB00/A2gIR0DVSeGmuTzNdX2UKGgGR0AmAAAAAAAAaAdLY2gIR0DVSehP557gdX2UKGgGR0BUgAAAAAAAaAdN/gFoCEdA1UnrX18LKHV9lChoBkdAYSAAAAAAAGgHTTUDaAhHQNVJ/JssQNF1fZQoaAZHQEQAAAAAAABoB00PAWgIR0DVSgosg+yJdX2UKGgGR0By4AAAAAAAaAdN3AZoCEdA1UoJeE7GN3V9lChoBkdAIgAAAAAAAGgHS1ZoCEdA1UoVsWO6unV9lChoBkdARIAAAAAAAGgHTRMBaAhHQNVKGOkpI+Z1fZQoaAZHQC4AAAAAAABoB0t+aAhHQNVKHXiR4hV1fZQoaAZHQIJgAAAAAABoB00yDWgIR0DVSi2K77KrdX2UKGgGR0BEAAAAAAAAaAdNDwFoCEdA1UpEbyH2y3V9lChoBkdAXoAAAAAAAGgHTdoCaAhHQNVKSYH1OCZ1fZQoaAZHQFXAAAAAAABoB00VAmgIR0DVSkxtFa0QdX2UKGgGR0BZQAAAAAAAaAdNXgJoCEdA1UpVE2HclHV9lChoBkdAaaAAAAAAAGgHTbYEaAhHQNVKV1NUOut1fZQoaAZHQGEgAAAAAABoB00zA2gIR0DVSllcry2AdX2UKGgGR0A0AAAAAAAAaAdLmGgIR0DVSlz3225QdX2UKGgGR0BWQAAAAAAAaAdNHAJoCEdA1Upg7P6bfHV9lChoBkdAUkAAAAAAAGgHTcABaAhHQNVKZYRVZLZ1fZQoaAZHQHWwAAAAAABoB03WB2gIR0DVSme4lQdkdX2UKGgGR0AmAAAAAAAAaAdLZmgIR0DVSmfr9l3AdX2UKGgGR0AmAAAAAAAAaAdLZGgIR0DVSm0Dr7fpdX2UKGgGR0AqAAAAAAAAaAdLbmgIR0DVSnjNUwSKdX2UKGgGR0A4AAAAAAAAaAdLrmgIR0DVSnwgHNX6dX2UKGgGR0By8AAAAAAAaAdN3gZoCEdA1UqCxuKoAHV9lChoBkdAMAAAAAAAAGgHS4ZoCEdA1Uw3sLORknV9lChoBkdAWYAAAAAAAGgHTWQCaAhHQNVMOKxgRbt1fZQoaAZHQG/gAAAAAABoB03SBWgIR0DVTDxuWKMvdX2UKGgGR0BNAAAAAAAAaAdNcQFoCEdA1Uw9txMnJHV9lChoBkdASAAAAAAAAGgHTTQBaAhHQNVMQAPuogp1fZQoaAZHQFDAAAAAAABoB02pAWgIR0DVTEKJKraNdX2UKGgGR0BVAAAAAAAAaAdNAwJoCEdA1UxFdQO4G3V9lChoBkdAIgAAAAAAAGgHS1ZoCEdA1UxNyyUs4HV9lChoBkdAOgAAAAAAAGgHS75oCEdA1UxWL7oB73V9lChoBkdAQAAAAAAAAGgHS91oCEdA1UxbrLQokXV9lChoBkdAJgAAAAAAAGgHS2doCEdA1UxdsAvL5nV9lChoBkdAUAAAAAAAAGgHTZIBaAhHQNVMZa3AmAt1fZQoaAZHQFUAAAAAAABoB038AWgIR0DVTGcbWEsbdX2UKGgGR0BSQAAAAAAAaAdNwAFoCEdA1Ux0R/EwWXV9lChoBkdARwAAAAAAAGgHTS4BaAhHQNVMdcrd30R1fZQoaAZHQF5AAAAAAABoB03aAmgIR0DVTIVtWMjvdX2UKGgGR0BIgAAAAAAAaAdNOwFoCEdA1UyOCZ4Oc3V9lChoBkdASIAAAAAAAGgHTT4BaAhHQNVMkKVY6n11fZQoaAZHQD8AAAAAAABoB0vTaAhHQNVMlzM3ZPF1fZQoaAZHQEsAAAAAAABoB01VAWgIR0DVTJySHM2WdX2UKGgGR0B6YAAAAAAAaAdNhQloCEdA1Uys27FsHnV9lChoBkdAQAAAAAAAAGgHS+NoCEdA1Uy00lZ5iXV9lChoBkdAagAAAAAAAGgHTcQEaAhHQNVMuFndweh1fZQoaAZHQFTAAAAAAABoB03/AWgIR0DVTLhkRSP2dX2UKGgGR0B/wAAAAAAAaAdNaQtoCEdA1Uy/U2DQJHV9lChoBkdAXAAAAAAAAGgHTaYCaAhHQNVMwlJtix51fZQoaAZHQHGQAAAAAABoB01jBmgIR0DVTMSEf1YhdX2UKGgGR0BRQAAAAAAAaAdNqwFoCEdA1UzKCgsbvXV9lChoBkdALgAAAAAAAGgHS3toCEdA1UzM8kUsWnV9lChoBkdAJAAAAAAAAGgHS11oCEdA1UzO6hQFcXV9lChoBkdAHAAAAAAAAGgHS1BoCEdA1U6D2U0N0HV9lChoBkdASIAAAAAAAGgHTTsBaAhHQNVOh7yxzJZ1fZQoaAZHQE0AAAAAAABoB010AWgIR0DVTpjOqvNedX2UKGgGR0BMAAAAAAAAaAdNZAFoCEdA1U6aEU0vXnV9lChoBkdAOwAAAAAAAGgHS7poCEdA1U6mDOTq0XV9lChoBkdAacAAAAAAAGgHTbYEaAhHQNVOp3YUWVN1fZQoaAZHQECAAAAAAABoB0vhaAhHQNVOqJTqB3B1fZQoaAZHQFAAAAAAAABoB02MAWgIR0DVTqszabnYdX2UKGgGR0BVgAAAAAAAaAdNDwJoCEdA1U7GIJZ4fXV9lChoBkdAVsAAAAAAAGgHTTICaAhHQNVOxoMOPNp1fZQoaAZHQEgAAAAAAABoB000AWgIR0DVTtoRcu8LdX2UKGgGR0BKgAAAAAAAaAdNUAFoCEdA1U7cVs1sL3V9lChoBkdAcCAAAAAAAGgHTdgFaAhHQNVO2yRbKRx1fZQoaAZHQGmgAAAAAABoB02vBGgIR0DVTt1weeWfdX2UKGgGR0BowAAAAAAAaAdNigRoCEdA1U7xGqPwNXV9lChoBkdAPQAAAAAAAGgHS81oCEdA1U79yfL9uXV9lChoBkdAVwAAAAAAAGgHTTACaAhHQNVPAXenAIp1fZQoaAZHQCoAAAAAAABoB0tzaAhHQNVPFAvlEJB1fZQoaAZHQEQAAAAAAABoB00PAWgIR0DVTxy7g88tdX2UKGgGR0BQgAAAAAAAaAdNnwFoCEdA1U8edKNADHVlLg==" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 4648, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": { ":type:": "", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }