CoreyMorris commited on
Commit
a78c8ce
·
1 Parent(s): 9f1b1d6

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pixelcopter-PLE-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pixelcopter-PLE-v0
16
+ type: Pixelcopter-PLE-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 212.70 +/- 193.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **Pixelcopter-PLE-v0**
25
+ This is a trained model of a **PPO** agent playing **Pixelcopter-PLE-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe4c39f6af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe4c39f6b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe4c39f6c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe4c39f6ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fe4c39f6d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fe4c39f6dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe4c39f6e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe4c39f6ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe4c39f6f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe4c39f9040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe4c39f90d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe4c39f9160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe4c39f24b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLB4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSweFlIwBQ5R0lFKUjARoaWdolGgTKJYcAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLB4WUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYHAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLB4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYHAAAAAAAAAAAAAAAAAACUaCJLB4WUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [7], "low": "[-inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False]", "bounded_above": "[False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgM2dsqV3h0wkeIMDY696CX41Ozs+iBXVu0dQIcGiLjqKW1jMIQ4azoZyO88yeoBBjT46DTzlMqCIazn/hFyqYUQNbSyazh2yx1RrzVSAqvyFgr8j2WRNGTjTSF7V38W9z5J/M7WU1pvI092ZJhmbrHA8ip2sb3Q3KMiGTrhKUvmDO7gwmqmKZEPsSs/iF8AcYJjk8l7y6hodGQaqz0prvtkTkAyzs56x086OH1EvI756bIAJ4dkrAwVRetT8ZCB+qZIcxm/y22yhDgJb/REd4wuZIOM+Ef6Ib8CciqXK/LxYK8fyUlxECiYEZu0bescd/UhStwkFmb3/hzWE+YmKJlr+YF9K3h+7Qvg1Xgw3ZAI+ralsU1UCOiQ6LoDjXwpuLrnKFHKMn9A3lM0fc0FCM430m2pXT+ia8PXSYCICD2RctNIroI9HDdMGQPZgYsqFfMK671AIfjk1XtVaiN4hNSUxwSgwb1wzvB8dL92hAOCcVI7NAU4Pc1RlIEFOf7bt8pL2h/WizB0LS95pX5Tt9AUoAkZhRoBeaHjSbHcZLqK4tlzBML6LlCyYdjNLHNwhGb6qVqO4Ql48tuZfwRCUg2Sa7sG0/x7buem9znf7PTj+pA3Dm2RZ1EPeppffLD82ts4r/jW7iOBTe/m/WjvbOVhaR36ySSwhWzxdYqgjb1p1Bn6T0CJwbb1VoOsGToQvH0hI+/LDOcKPXzFHJhtowfHdPRLNFEzkjs4Tyhud9bR6+IF4jkgmSeffOQ3bqd2p7RseLXkASKQqpEheYWIXX5zN2EmBWg7YLip35zC/p3RdSFyUIjFli6w1pydrKBdLyeCQNYONeAmANkKNmNeBDadwB5vUSRlLcNH6I4Xfz57KUhPcgmYdFsWJ45o2D/EgY1fNZrAkaHGXXpAGzf0OuLnOHzvC9QtRHCarWooGdmix66zmOZN6+rIJPNyQ9e1vE8eLQ2iEKEFae15UEmbGRT8DWy5lxt3coRVWbZTSno6Kt3LWcL8WbV4sV/1vWpGtkrBV+5DbJK4zoytXNxB+L3O3p4p+ijHXxjfASgZJjWKhzK2gWaTiEWhx2aGwUbNVkD4miyeWUfi7O0hkblN+e8UXRG5+0XD6aiBCWHLqXvHfkGDTu4b+yOQCzbcRdnpCqVgXGDSd/PyMv8DFmnrgbrmTHZhw24uxlpFTHTy5/j5mMDn2gDNfweX/PsEwJT1wmvXKdB+2kV76ANKMwg5L2+GcJcRU9nsO7RZnNVR1rPPIWnzMcGUYrumc0eeNL8pddgochRElGGzkuU5Ur1LzdRdxpH+CGewks0/brCkbQtGC9cP2a+cgIQ4l3c6+cITG/Z0Y9q+GwY4M3yTPv0mpI6FBHb7xalnSbPiSJuC9je/ime8kWq+94XwvqhEyaDx2DhhjNzhr5/QU1uu3INBImSLjBtARSabqTzxeU1bCXCvJaW3LivbauYC5OE7e9rd1Eh2dcQ9SszH4g5jd3c9zGGD2bZlJ9pQ+5Oz77POM+R8f82MgjMPLKDAvIAlcJWxAmrIlxHN2/QwgSJIpAy4zLwIBVMRY4Wf6B42yhMeH4OsQ0jBasQXAOLDyVqx6LbYf15LAJ2Wmx4DUzIGxf18GeBfgzVtiOniFDtY+NIGrCgVWJWffuOgy8ncysjaBYX8X237Jyxn8GGj86psrhK2v2fuehsAmgnlmCmVmDt0T/d95w0ZCf7QlpVIuuyslw88PWYkqcEdiLisbK1k6Rs7LttIweRnugAX6V6U/FPwWZucMdx6Xp/FISyahWITJw+avtxTmQ15aH3PHv3M1otT+GpblLAnUCfI54xkCGc+Cuag2ZprrgSlN6YH4uTYXCVmQAoImQLqJK0TMY6WGcy8FNPbjc3+wOVYSdXlR/FaT2y2LqTTUa/HoTwnDNOfwDw9AqDI2cKmU2vUN8/QcL1qR/DKprgIQlUMklWjCBah3CTxS2ZaGLKnTI/phSuytaORygcK90ipVHw984CCIMNZ+hmcv/39bFy129wHKiJwpNl6azcpe9KhyOlWQ+4ETYAvA3qZLu/31dOD/yC2Vq9oN9MFnvn8wObREguqiaf/jhCTcbgSDNWZdyv8rTJACf8y+ohpJMazmtUlnluVlX12UB7wJ5Pm+f3OIiFIQa8tHYDVrtSlfO6vSvnKI+4koKdgEI/Ua/6ZGKMBYWln48+mROY1fnxcQRKEhnmC2fhfu4biNH87QCRNxuck2m3BIOaoRr30JUxhkYg2ykQeEnqlRTiXK7GgT+Z899Nst4sAztM6hRaHvR+S6NNNUat9LwyeDQuYpX0GKmVs3blI7BwkeCyhJ22Fo6XmsnwswH1/Q6vMIBfNo7pEmw7DkBMWdWwwxk/rqDBOUql1MemMBd2ymBbPRX6ycyO7Az3TyBbaRWzidXj8b59P5C/P2Q/dSwkVHVjrD/oSac73dN7ZPDuYPvgaYji7RaAb+Hg/gEnha73U2Bsle3AQXZYCYeSIvp7SjhitiY8bEc3fDkYBgyS4pVuLyq1/5oRiYB8mZXDp4q1K2K+6YhO+Ej3WDmDehI/uP7C+iwn4GAK+kMFZz8IWC4D5jDuoG7l6IsVre0qG0TnDX/1sklFUbkI6f6WZtCXRtL3En93DWSOGQrlho6bb2vf6xP8xZ0Go5zffwPRZRbqt6YvL1jVFsr6i8Sq13rgoN1H4F1YaA3KOROoiSdrkUfCvnPtv2j/OQCeG3J7KsAGnOTggHTxZc84Rn/EaQxopnq8iW3b5Vw87wKPSMd9IjtV6hSsRZsAlOZT44lhO3FdIhoytPPXlbyYKeBcP7Jsz1Uj5B9MUMvYY/l4JJ3x0bfoIzfj2UQq20KiNQic46g1CtjPKMJzYE9cePo/ngu7b8NV2ryzUc21HLn8JNluk/yerIPAn/lC24o+1eOaDm9d6O14na3wY3RC1unogo3zi6za/75+Zz1fR3qW5SQhY20cHvTpGBldjvqORbdHor5OZBf/0maBAIlQYt5052F0XxR4rVznCVxkaOHSh0+TTfQJ5OrJRWH0IlcStoGENODXa+uLsDBDcknNmxTXp6nxjoxcFyXRaKUZpmOt+THNoZbVDpkpurPhKre8GX+4fMG7LaUP62o01HoyPT4qEiNDakNQxaRZkfXOl50+0v96cGlRH5rD5KzZWM9pAkt95UREBxZ2mAWE0OvginbTpHH3B4yiSAxEB/JSf8dmCuHhTnX+0s698vzad5SPPuq1c/3cZAVN+GGNW0k6VRZ4nKRZZzCI5YrXNXtqnoBvPokYmWfH63q8wNdv2Cti7nQn3nZiJZoN/fRnZrLi3IOrp3lGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 2, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 9240000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": 1463591872, "action_noise": null, "start_time": 1674339630410992934, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": "runs/Pixelcopter-PLE-v0__ppo__1463591872__1674339622/Pixelcopter-PLE-v0", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANK1xkFMnBQ+pGs9QVyUQkH2KFxAAAAAQgAAJEJSR7lBdCUcPqWOAkFbcX1BSOE6QQAA2EEAABBCES7NQSioez4iXGpB3qMVQRSur0EAAKhBAADwQZ271UHSdgQ+nbuFQY0R6UDD9ShAAAAMQgAAMELtI7dBg5uAPtlHPkEnuEFB7FE4QAAA+EEAACBC0Im6QQY2Ej3QiYpBwdjVQJqZwUEAAKhBAADwQbyezUHamtW+vJ6FQRCF6UBI4TpCAACAQQAAyEGEptNBMdyKvoSmo0Hey2JAPQoHQgAAUEEAALBBTlzfQbJDzz2buD5BZUdBQRSu70EAAIhBAADQQY2S0kH2XE0+jZKKQc611UApXG9BAACYQQAA4EEStL5BpaOgPSNoXUHdlyJBFK4nQQAAAEIAACRCeMq4QS8pLT7vlCFBEWteQVyPAkAAAPhBAAAgQly4BUJ+IYo/uHCDQSI98kBxPSpBAAC4QQAAAEKWgbdB4ZafPZaBh0Go+eFArkeBQQAA8EEAABxCXHbUQTNZfz5cdpRBjiauQB+Fe0EAAAxCAAAwQt9Tv0ED5JM+31OPQYawwkCF6w1CAACQQQAA2EGUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLB4aUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.07921920000000005, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIMoAAAAAACMAWyUTcMNjAF0lEdA0wyMPDpC8nV9lChoBkdAYmAAAAAAAGgHTWYDaAhHQNMMuQxzq8l1fZQoaAZHQD8AAAAAAABoB0vcaAhHQNMMuQ+MZP51fZQoaAZHQE4AAAAAAABoB011AWgIR0DTDMnbSJCTdX2UKGgGR0BjgAAAAAAAaAdNkwNoCEdA0wzKcZccEXV9lChoBkdAcDAAAAAAAGgHTd8FaAhHQNMM4AzUI9l1fZQoaAZHQIGgAAAAAABoB02pDGgIR0DTDOWqxTsIdX2UKGgGR0BEAAAAAAAAaAdNDwFoCEdA0wzqHskY43V9lChoBkdAMQAAAAAAAGgHS4hoCEdA0w0CDVpblnV9lChoBkdAeZAAAAAAAGgHTTIJaAhHQNMP5NyHVPN1fZQoaAZHQHgwAAAAAABoB03FCGgIR0DTD+fMB6rvdX2UKGgGR0AuAAAAAAAAaAdLeWgIR0DTEASU9pyqdX2UKGgGR0BFAAAAAAAAaAdNFQFoCEdA0xAkPykKu3V9lChoBkdATAAAAAAAAGgHTWMBaAhHQNMQJhZ6lch1fZQoaAZHQGygAAAAAABoB003BWgIR0DTEEnc2zfKdX2UKGgGR0BDAAAAAAAAaAdL/2gIR0DTEFLslb/wdX2UKGgGR0CGmAAAAAAAaAdNJBBoCEdA0xm2dLxqf3V9lChoBkdATYAAAAAAAGgHTXABaAhHQNMZ6+jmCAd1fZQoaAZHQG4AAAAAAABoB013BWgIR0DTGhwRVZLadX2UKGgGR0B5YAAAAAAAaAdNMQloCEdA0x5WNBWxQnV9lChoBkdAkdgAAAAAAGgHTXAZaAhHQNMeWgDJU5x1fZQoaAZHQFWAAAAAAABoB00IAmgIR0DTHnXgk1MudX2UKGgGR0BxoAAAAAAAaAdNaAZoCEdA0x59fsu3+nV9lChoBkdAdnAAAAAAAGgHTSQIaAhHQNMencnAqNJ1fZQoaAZHQImwAAAAAABoB01BEmgIR0DTHqsWbgCPdX2UKGgGR0BFgAAAAAAAaAdNGgFoCEdA0x609WZJCnV9lChoBkdAZCAAAAAAAGgHTbMDaAhHQNMfPQvHtF91fZQoaAZHQH3QAAAAAABoB03ACmgIR0DTH0QY8+zMdX2UKGgGR0BowAAAAAAAaAdNjQRoCEdA0x9LpIczZnV9lChoBkdAYSAAAAAAAGgHTTMDaAhHQNMjJ9Fa0Qd1fZQoaAZHQG1gAAAAAABoB01eBWgIR0DTIyykgwGodX2UKGgGR0BkYAAAAAAAaAdNvwNoCEdA0y3y7q6e5HV9lChoBkdAOwAAAAAAAGgHS7poCEdA0y3yxsVLz3V9lChoBkdARAAAAAAAAGgHTQ8BaAhHQNMuLFUyYXx1fZQoaAZHQDEAAAAAAABoB0uBaAhHQNMuSQtOEdx1fZQoaAZHQH9wAAAAAABoB01RC2gIR0DTLlqDTSb6dX2UKGgGR0CUMAAAAAAAaAdN0xxoCEdA0y5qsu3+dnV9lChoBkdAclAAAAAAAGgHTacGaAhHQNMueuNtIkJ1fZQoaAZHQIAIAAAAAABoB02AC2gIR0DTLo7o6jnFdX2UKGgGR0BjoAAAAAAAaAdNpwNoCEdA0y6ZNFSbY3V9lChoBkdAYkAAAAAAAGgHTWEDaAhHQNMurPfoA4p1fZQoaAZHQIWQAAAAAABoB018D2gIR0DTLrXICEHudX2UKGgGR0BXAAAAAAAAaAdNOAJoCEdA0zF0Ek0JnnV9lChoBkdAiJAAAAAAAGgHTZURaAhHQNMxfvsE7nx1fZQoaAZHQGIAAAAAAABoB01QA2gIR0DTMZ7bcoH+dX2UKGgGR0BZQAAAAAAAaAdNZAJoCEdA0zG8Ui6g/XV9lChoBkdAYuAAAAAAAGgHTYADaAhHQNMx72+oLoh1fZQoaAZHQGhgAAAAAABoB01+BGgIR0DTMgKbDuSfdX2UKGgGR0B2kAAAAAAAaAdNGwhoCEdA0zIKEJSiunV9lChoBkdAdiAAAAAAAGgHTQUIaAhHQNMyDN1loUV1fZQoaAZHQEEAAAAAAABoB0vlaAhHQNMyNPe54GF1fZQoaAZHQE+AAAAAAABoB02QAWgIR0DTPOG09hZydX2UKGgGR0B5cAAAAAAAaAdNLgloCEdA0zzv8GLUC3V9lChoBkdAUIAAAAAAAGgHTZgBaAhHQNM9AJHI6sB1fZQoaAZHQD0AAAAAAABoB0vPaAhHQNM/3KXSjQB1fZQoaAZHQHQAAAAAAABoB004B2gIR0DTQAKbF0gbdX2UKGgGR0BZgAAAAAAAaAdNagJoCEdA00ASMewLVnV9lChoBkdAicAAAAAAAGgHTWYSaAhHQNNAHvVmSQp1fZQoaAZHQG9gAAAAAABoB022BWgIR0DTQDQK3NLUdX2UKGgGR0CGoAAAAAAAaAdNRBBoCEdA00A8YJ3PiXV9lChoBkdAOQAAAAAAAGgHS69oCEdA00Bh2h7E53V9lChoBkdAaiAAAAAAAGgHTckEaAhHQNNAa0YwZfl1fZQoaAZHQDIAAAAAAABoB0uIaAhHQNNAiIBV+7V1fZQoaAZHQGjAAAAAAABoB02KBGgIR0DTQLmHrQgLdX2UKGgGR0BfwAAAAAAAaAdN8gJoCEdA00DCy925hHV9lChoBkdAeWAAAAAAAGgHTS4JaAhHQNNAycOwxFl1fZQoaAZHQBwAAAAAAABoB0tSaAhHQNNAyw9JSR91fZQoaAZHQGigAAAAAABoB02KBGgIR0DTRvpfF72MdX2UKGgGR0B8sAAAAAAAaAdNWwpoCEdA00cC0zTF2nV9lChoBkdAenAAAAAAAGgHTYkJaAhHQNNHEsGHHm11fZQoaAZHQFIAAAAAAABoB02/AWgIR0DTRxhocrAhdX2UKGgGR0BXAAAAAAAAaAdNLgJoCEdA00cn7TlT33V9lChoBkdAb2AAAAAAAGgHTbUFaAhHQNNHLBO58Sh1fZQoaAZHQGHgAAAAAABoB01VA2gIR0DTRy7dYW+HdX2UKGgGR0CBGAAAAAAAaAdNRAxoCEdA01HvuUUwjHV9lChoBkdATIAAAAAAAGgHTW8BaAhHQNNSAI3FUAF1fZQoaAZHQFOAAAAAAABoB03dAWgIR0DTUhBqxkd4dX2UKGgGR0BEAAAAAAAAaAdNDwFoCEdA01Iqp3os7XV9lChoBkdATQAAAAAAAGgHTXUBaAhHQNNSKowmE5B1fZQoaAZHQFWAAAAAAABoB00RAmgIR0DTUjh3Roh7dX2UKGgGR0BXAAAAAAAAaAdNOAJoCEdA01I7JW/8EXV9lChoBkdAUgAAAAAAAGgHTb4BaAhHQNNSPQ1JlJ91fZQoaAZHQDEAAAAAAABoB0uCaAhHQNNSRuhTOxB1fZQoaAZHQDMAAAAAAABoB0uZaAhHQNNSXhd6cAl1fZQoaAZHQFqAAAAAAABoB01+AmgIR0DTUl/RtxdZdX2UKGgGR0B8sAAAAAAAaAdNVwpoCEdA01J1QCCBgHV9lChoBkdAV0AAAAAAAGgHTTgCaAhHQNNShzu8brF1fZQoaAZHQEGAAAAAAABoB0vwaAhHQNNWpA9ic5N1fZQoaAZHQJR4AAAAAABoB006HWgIR0DTVrzag261dX2UKGgGR0B80AAAAAAAaAdNVwpoCEdA01bCLDye7XV9lChoBkdAIgAAAAAAAGgHS1ZoCEdA01bQkfLcK3V9lChoBkdAVwAAAAAAAGgHTTgCaAhHQNNW1Ar+YMR1fZQoaAZHQGHAAAAAAABoB01KA2gIR0DTVvPB0p3HdX2UKGgGR0BzMAAAAAAAaAdN7QZoCEdA01b26BRQ8HV9lChoBkdAe7AAAAAAAGgHTfEJaAhHQNNXCJEtuk11fZQoaAZHQEsAAAAAAABoB01YAWgIR0DTVw86BAfMdX2UKGgGR0BlgAAAAAAAaAdN8QNoCEdA01cpB7/n4nV9lChoBkdAU0AAAAAAAGgHTd8BaAhHQNNXOKk69011fZQoaAZHQH/wAAAAAABoB02CC2gIR0DTV405p8F7dX2UKGgGR0BWQAAAAAAAaAdNIAJoCEdA01eeP9UCJXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3080, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-137-generic-x86_64-with-glibc2.17 # 154-Ubuntu SMP Thu Jan 5 17:03:22 UTC 2023", "Python": "3.8.15", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
ppo-Pixelcopter-PLE-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfb4049bcebcb6ef3d99351d37a42b4e7761f4d8bf773508d8922315c122fd58
3
+ size 147853
ppo-Pixelcopter-PLE-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-Pixelcopter-PLE-v0/data ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe4c39f6af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe4c39f6b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe4c39f6c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe4c39f6ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe4c39f6d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe4c39f6dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe4c39f6e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe4c39f6ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe4c39f6f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe4c39f9040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe4c39f90d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe4c39f9160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe4c39f24b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLB4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSweFlIwBQ5R0lFKUjARoaWdolGgTKJYcAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLB4WUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYHAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLB4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYHAAAAAAAAAAAAAAAAAACUaCJLB4WUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 7
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgM2dsqV3h0wkeIMDY696CX41Ozs+iBXVu0dQIcGiLjqKW1jMIQ4azoZyO88yeoBBjT46DTzlMqCIazn/hFyqYUQNbSyazh2yx1RrzVSAqvyFgr8j2WRNGTjTSF7V38W9z5J/M7WU1pvI092ZJhmbrHA8ip2sb3Q3KMiGTrhKUvmDO7gwmqmKZEPsSs/iF8AcYJjk8l7y6hodGQaqz0prvtkTkAyzs56x086OH1EvI756bIAJ4dkrAwVRetT8ZCB+qZIcxm/y22yhDgJb/REd4wuZIOM+Ef6Ib8CciqXK/LxYK8fyUlxECiYEZu0bescd/UhStwkFmb3/hzWE+YmKJlr+YF9K3h+7Qvg1Xgw3ZAI+ralsU1UCOiQ6LoDjXwpuLrnKFHKMn9A3lM0fc0FCM430m2pXT+ia8PXSYCICD2RctNIroI9HDdMGQPZgYsqFfMK671AIfjk1XtVaiN4hNSUxwSgwb1wzvB8dL92hAOCcVI7NAU4Pc1RlIEFOf7bt8pL2h/WizB0LS95pX5Tt9AUoAkZhRoBeaHjSbHcZLqK4tlzBML6LlCyYdjNLHNwhGb6qVqO4Ql48tuZfwRCUg2Sa7sG0/x7buem9znf7PTj+pA3Dm2RZ1EPeppffLD82ts4r/jW7iOBTe/m/WjvbOVhaR36ySSwhWzxdYqgjb1p1Bn6T0CJwbb1VoOsGToQvH0hI+/LDOcKPXzFHJhtowfHdPRLNFEzkjs4Tyhud9bR6+IF4jkgmSeffOQ3bqd2p7RseLXkASKQqpEheYWIXX5zN2EmBWg7YLip35zC/p3RdSFyUIjFli6w1pydrKBdLyeCQNYONeAmANkKNmNeBDadwB5vUSRlLcNH6I4Xfz57KUhPcgmYdFsWJ45o2D/EgY1fNZrAkaHGXXpAGzf0OuLnOHzvC9QtRHCarWooGdmix66zmOZN6+rIJPNyQ9e1vE8eLQ2iEKEFae15UEmbGRT8DWy5lxt3coRVWbZTSno6Kt3LWcL8WbV4sV/1vWpGtkrBV+5DbJK4zoytXNxB+L3O3p4p+ijHXxjfASgZJjWKhzK2gWaTiEWhx2aGwUbNVkD4miyeWUfi7O0hkblN+e8UXRG5+0XD6aiBCWHLqXvHfkGDTu4b+yOQCzbcRdnpCqVgXGDSd/PyMv8DFmnrgbrmTHZhw24uxlpFTHTy5/j5mMDn2gDNfweX/PsEwJT1wmvXKdB+2kV76ANKMwg5L2+GcJcRU9nsO7RZnNVR1rPPIWnzMcGUYrumc0eeNL8pddgochRElGGzkuU5Ur1LzdRdxpH+CGewks0/brCkbQtGC9cP2a+cgIQ4l3c6+cITG/Z0Y9q+GwY4M3yTPv0mpI6FBHb7xalnSbPiSJuC9je/ime8kWq+94XwvqhEyaDx2DhhjNzhr5/QU1uu3INBImSLjBtARSabqTzxeU1bCXCvJaW3LivbauYC5OE7e9rd1Eh2dcQ9SszH4g5jd3c9zGGD2bZlJ9pQ+5Oz77POM+R8f82MgjMPLKDAvIAlcJWxAmrIlxHN2/QwgSJIpAy4zLwIBVMRY4Wf6B42yhMeH4OsQ0jBasQXAOLDyVqx6LbYf15LAJ2Wmx4DUzIGxf18GeBfgzVtiOniFDtY+NIGrCgVWJWffuOgy8ncysjaBYX8X237Jyxn8GGj86psrhK2v2fuehsAmgnlmCmVmDt0T/d95w0ZCf7QlpVIuuyslw88PWYkqcEdiLisbK1k6Rs7LttIweRnugAX6V6U/FPwWZucMdx6Xp/FISyahWITJw+avtxTmQ15aH3PHv3M1otT+GpblLAnUCfI54xkCGc+Cuag2ZprrgSlN6YH4uTYXCVmQAoImQLqJK0TMY6WGcy8FNPbjc3+wOVYSdXlR/FaT2y2LqTTUa/HoTwnDNOfwDw9AqDI2cKmU2vUN8/QcL1qR/DKprgIQlUMklWjCBah3CTxS2ZaGLKnTI/phSuytaORygcK90ipVHw984CCIMNZ+hmcv/39bFy129wHKiJwpNl6azcpe9KhyOlWQ+4ETYAvA3qZLu/31dOD/yC2Vq9oN9MFnvn8wObREguqiaf/jhCTcbgSDNWZdyv8rTJACf8y+ohpJMazmtUlnluVlX12UB7wJ5Pm+f3OIiFIQa8tHYDVrtSlfO6vSvnKI+4koKdgEI/Ua/6ZGKMBYWln48+mROY1fnxcQRKEhnmC2fhfu4biNH87QCRNxuck2m3BIOaoRr30JUxhkYg2ykQeEnqlRTiXK7GgT+Z899Nst4sAztM6hRaHvR+S6NNNUat9LwyeDQuYpX0GKmVs3blI7BwkeCyhJ22Fo6XmsnwswH1/Q6vMIBfNo7pEmw7DkBMWdWwwxk/rqDBOUql1MemMBd2ymBbPRX6ycyO7Az3TyBbaRWzidXj8b59P5C/P2Q/dSwkVHVjrD/oSac73dN7ZPDuYPvgaYji7RaAb+Hg/gEnha73U2Bsle3AQXZYCYeSIvp7SjhitiY8bEc3fDkYBgyS4pVuLyq1/5oRiYB8mZXDp4q1K2K+6YhO+Ej3WDmDehI/uP7C+iwn4GAK+kMFZz8IWC4D5jDuoG7l6IsVre0qG0TnDX/1sklFUbkI6f6WZtCXRtL3En93DWSOGQrlho6bb2vf6xP8xZ0Go5zffwPRZRbqt6YvL1jVFsr6i8Sq13rgoN1H4F1YaA3KOROoiSdrkUfCvnPtv2j/OQCeG3J7KsAGnOTggHTxZc84Rn/EaQxopnq8iW3b5Vw87wKPSMd9IjtV6hSsRZsAlOZT44lhO3FdIhoytPPXlbyYKeBcP7Jsz1Uj5B9MUMvYY/l4JJ3x0bfoIzfj2UQq20KiNQic46g1CtjPKMJzYE9cePo/ngu7b8NV2ryzUc21HLn8JNluk/yerIPAn/lC24o+1eOaDm9d6O14na3wY3RC1unogo3zi6za/75+Zz1fR3qW5SQhY20cHvTpGBldjvqORbdHor5OZBf/0maBAIlQYt5052F0XxR4rVznCVxkaOHSh0+TTfQJ5OrJRWH0IlcStoGENODXa+uLsDBDcknNmxTXp6nxjoxcFyXRaKUZpmOt+THNoZbVDpkpurPhKre8GX+4fMG7LaUP62o01HoyPT4qEiNDakNQxaRZkfXOl50+0v96cGlRH5rD5KzZWM9pAkt95UREBxZ2mAWE0OvginbTpHH3B4yiSAxEB/JSf8dmCuHhTnX+0s698vzad5SPPuq1c/3cZAVN+GGNW0k6VRZ4nKRZZzCI5YrXNXtqnoBvPokYmWfH63q8wNdv2Cti7nQn3nZiJZoN/fRnZrLi3IOrp3lGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
+ "n": 2,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 9240000,
47
+ "_total_timesteps": 10000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": 1463591872,
50
+ "action_noise": null,
51
+ "start_time": 1674339630410992934,
52
+ "learning_rate": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
55
+ },
56
+ "tensorboard_log": "runs/Pixelcopter-PLE-v0__ppo__1463591872__1674339622/Pixelcopter-PLE-v0",
57
+ "lr_schedule": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
60
+ },
61
+ "_last_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANK1xkFMnBQ+pGs9QVyUQkH2KFxAAAAAQgAAJEJSR7lBdCUcPqWOAkFbcX1BSOE6QQAA2EEAABBCES7NQSioez4iXGpB3qMVQRSur0EAAKhBAADwQZ271UHSdgQ+nbuFQY0R6UDD9ShAAAAMQgAAMELtI7dBg5uAPtlHPkEnuEFB7FE4QAAA+EEAACBC0Im6QQY2Ej3QiYpBwdjVQJqZwUEAAKhBAADwQbyezUHamtW+vJ6FQRCF6UBI4TpCAACAQQAAyEGEptNBMdyKvoSmo0Hey2JAPQoHQgAAUEEAALBBTlzfQbJDzz2buD5BZUdBQRSu70EAAIhBAADQQY2S0kH2XE0+jZKKQc611UApXG9BAACYQQAA4EEStL5BpaOgPSNoXUHdlyJBFK4nQQAAAEIAACRCeMq4QS8pLT7vlCFBEWteQVyPAkAAAPhBAAAgQly4BUJ+IYo/uHCDQSI98kBxPSpBAAC4QQAAAEKWgbdB4ZafPZaBh0Go+eFArkeBQQAA8EEAABxCXHbUQTNZfz5cdpRBjiauQB+Fe0EAAAxCAAAwQt9Tv0ED5JM+31OPQYawwkCF6w1CAACQQQAA2EGUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLB4aUjAFDlHSUUpQu"
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": null,
70
+ "_episode_num": 0,
71
+ "use_sde": false,
72
+ "sde_sample_freq": -1,
73
+ "_current_progress_remaining": 0.07921920000000005,
74
+ "ep_info_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIMoAAAAAACMAWyUTcMNjAF0lEdA0wyMPDpC8nV9lChoBkdAYmAAAAAAAGgHTWYDaAhHQNMMuQxzq8l1fZQoaAZHQD8AAAAAAABoB0vcaAhHQNMMuQ+MZP51fZQoaAZHQE4AAAAAAABoB011AWgIR0DTDMnbSJCTdX2UKGgGR0BjgAAAAAAAaAdNkwNoCEdA0wzKcZccEXV9lChoBkdAcDAAAAAAAGgHTd8FaAhHQNMM4AzUI9l1fZQoaAZHQIGgAAAAAABoB02pDGgIR0DTDOWqxTsIdX2UKGgGR0BEAAAAAAAAaAdNDwFoCEdA0wzqHskY43V9lChoBkdAMQAAAAAAAGgHS4hoCEdA0w0CDVpblnV9lChoBkdAeZAAAAAAAGgHTTIJaAhHQNMP5NyHVPN1fZQoaAZHQHgwAAAAAABoB03FCGgIR0DTD+fMB6rvdX2UKGgGR0AuAAAAAAAAaAdLeWgIR0DTEASU9pyqdX2UKGgGR0BFAAAAAAAAaAdNFQFoCEdA0xAkPykKu3V9lChoBkdATAAAAAAAAGgHTWMBaAhHQNMQJhZ6lch1fZQoaAZHQGygAAAAAABoB003BWgIR0DTEEnc2zfKdX2UKGgGR0BDAAAAAAAAaAdL/2gIR0DTEFLslb/wdX2UKGgGR0CGmAAAAAAAaAdNJBBoCEdA0xm2dLxqf3V9lChoBkdATYAAAAAAAGgHTXABaAhHQNMZ6+jmCAd1fZQoaAZHQG4AAAAAAABoB013BWgIR0DTGhwRVZLadX2UKGgGR0B5YAAAAAAAaAdNMQloCEdA0x5WNBWxQnV9lChoBkdAkdgAAAAAAGgHTXAZaAhHQNMeWgDJU5x1fZQoaAZHQFWAAAAAAABoB00IAmgIR0DTHnXgk1MudX2UKGgGR0BxoAAAAAAAaAdNaAZoCEdA0x59fsu3+nV9lChoBkdAdnAAAAAAAGgHTSQIaAhHQNMencnAqNJ1fZQoaAZHQImwAAAAAABoB01BEmgIR0DTHqsWbgCPdX2UKGgGR0BFgAAAAAAAaAdNGgFoCEdA0x609WZJCnV9lChoBkdAZCAAAAAAAGgHTbMDaAhHQNMfPQvHtF91fZQoaAZHQH3QAAAAAABoB03ACmgIR0DTH0QY8+zMdX2UKGgGR0BowAAAAAAAaAdNjQRoCEdA0x9LpIczZnV9lChoBkdAYSAAAAAAAGgHTTMDaAhHQNMjJ9Fa0Qd1fZQoaAZHQG1gAAAAAABoB01eBWgIR0DTIyykgwGodX2UKGgGR0BkYAAAAAAAaAdNvwNoCEdA0y3y7q6e5HV9lChoBkdAOwAAAAAAAGgHS7poCEdA0y3yxsVLz3V9lChoBkdARAAAAAAAAGgHTQ8BaAhHQNMuLFUyYXx1fZQoaAZHQDEAAAAAAABoB0uBaAhHQNMuSQtOEdx1fZQoaAZHQH9wAAAAAABoB01RC2gIR0DTLlqDTSb6dX2UKGgGR0CUMAAAAAAAaAdN0xxoCEdA0y5qsu3+dnV9lChoBkdAclAAAAAAAGgHTacGaAhHQNMueuNtIkJ1fZQoaAZHQIAIAAAAAABoB02AC2gIR0DTLo7o6jnFdX2UKGgGR0BjoAAAAAAAaAdNpwNoCEdA0y6ZNFSbY3V9lChoBkdAYkAAAAAAAGgHTWEDaAhHQNMurPfoA4p1fZQoaAZHQIWQAAAAAABoB018D2gIR0DTLrXICEHudX2UKGgGR0BXAAAAAAAAaAdNOAJoCEdA0zF0Ek0JnnV9lChoBkdAiJAAAAAAAGgHTZURaAhHQNMxfvsE7nx1fZQoaAZHQGIAAAAAAABoB01QA2gIR0DTMZ7bcoH+dX2UKGgGR0BZQAAAAAAAaAdNZAJoCEdA0zG8Ui6g/XV9lChoBkdAYuAAAAAAAGgHTYADaAhHQNMx72+oLoh1fZQoaAZHQGhgAAAAAABoB01+BGgIR0DTMgKbDuSfdX2UKGgGR0B2kAAAAAAAaAdNGwhoCEdA0zIKEJSiunV9lChoBkdAdiAAAAAAAGgHTQUIaAhHQNMyDN1loUV1fZQoaAZHQEEAAAAAAABoB0vlaAhHQNMyNPe54GF1fZQoaAZHQE+AAAAAAABoB02QAWgIR0DTPOG09hZydX2UKGgGR0B5cAAAAAAAaAdNLgloCEdA0zzv8GLUC3V9lChoBkdAUIAAAAAAAGgHTZgBaAhHQNM9AJHI6sB1fZQoaAZHQD0AAAAAAABoB0vPaAhHQNM/3KXSjQB1fZQoaAZHQHQAAAAAAABoB004B2gIR0DTQAKbF0gbdX2UKGgGR0BZgAAAAAAAaAdNagJoCEdA00ASMewLVnV9lChoBkdAicAAAAAAAGgHTWYSaAhHQNNAHvVmSQp1fZQoaAZHQG9gAAAAAABoB022BWgIR0DTQDQK3NLUdX2UKGgGR0CGoAAAAAAAaAdNRBBoCEdA00A8YJ3PiXV9lChoBkdAOQAAAAAAAGgHS69oCEdA00Bh2h7E53V9lChoBkdAaiAAAAAAAGgHTckEaAhHQNNAa0YwZfl1fZQoaAZHQDIAAAAAAABoB0uIaAhHQNNAiIBV+7V1fZQoaAZHQGjAAAAAAABoB02KBGgIR0DTQLmHrQgLdX2UKGgGR0BfwAAAAAAAaAdN8gJoCEdA00DCy925hHV9lChoBkdAeWAAAAAAAGgHTS4JaAhHQNNAycOwxFl1fZQoaAZHQBwAAAAAAABoB0tSaAhHQNNAyw9JSR91fZQoaAZHQGigAAAAAABoB02KBGgIR0DTRvpfF72MdX2UKGgGR0B8sAAAAAAAaAdNWwpoCEdA00cC0zTF2nV9lChoBkdAenAAAAAAAGgHTYkJaAhHQNNHEsGHHm11fZQoaAZHQFIAAAAAAABoB02/AWgIR0DTRxhocrAhdX2UKGgGR0BXAAAAAAAAaAdNLgJoCEdA00cn7TlT33V9lChoBkdAb2AAAAAAAGgHTbUFaAhHQNNHLBO58Sh1fZQoaAZHQGHgAAAAAABoB01VA2gIR0DTRy7dYW+HdX2UKGgGR0CBGAAAAAAAaAdNRAxoCEdA01HvuUUwjHV9lChoBkdATIAAAAAAAGgHTW8BaAhHQNNSAI3FUAF1fZQoaAZHQFOAAAAAAABoB03dAWgIR0DTUhBqxkd4dX2UKGgGR0BEAAAAAAAAaAdNDwFoCEdA01Iqp3os7XV9lChoBkdATQAAAAAAAGgHTXUBaAhHQNNSKowmE5B1fZQoaAZHQFWAAAAAAABoB00RAmgIR0DTUjh3Roh7dX2UKGgGR0BXAAAAAAAAaAdNOAJoCEdA01I7JW/8EXV9lChoBkdAUgAAAAAAAGgHTb4BaAhHQNNSPQ1JlJ91fZQoaAZHQDEAAAAAAABoB0uCaAhHQNNSRuhTOxB1fZQoaAZHQDMAAAAAAABoB0uZaAhHQNNSXhd6cAl1fZQoaAZHQFqAAAAAAABoB01+AmgIR0DTUl/RtxdZdX2UKGgGR0B8sAAAAAAAaAdNVwpoCEdA01J1QCCBgHV9lChoBkdAV0AAAAAAAGgHTTgCaAhHQNNShzu8brF1fZQoaAZHQEGAAAAAAABoB0vwaAhHQNNWpA9ic5N1fZQoaAZHQJR4AAAAAABoB006HWgIR0DTVrzag261dX2UKGgGR0B80AAAAAAAaAdNVwpoCEdA01bCLDye7XV9lChoBkdAIgAAAAAAAGgHS1ZoCEdA01bQkfLcK3V9lChoBkdAVwAAAAAAAGgHTTgCaAhHQNNW1Ar+YMR1fZQoaAZHQGHAAAAAAABoB01KA2gIR0DTVvPB0p3HdX2UKGgGR0BzMAAAAAAAaAdN7QZoCEdA01b26BRQ8HV9lChoBkdAe7AAAAAAAGgHTfEJaAhHQNNXCJEtuk11fZQoaAZHQEsAAAAAAABoB01YAWgIR0DTVw86BAfMdX2UKGgGR0BlgAAAAAAAaAdN8QNoCEdA01cpB7/n4nV9lChoBkdAU0AAAAAAAGgHTd8BaAhHQNNXOKk69011fZQoaAZHQH/wAAAAAABoB02CC2gIR0DTV405p8F7dX2UKGgGR0BWQAAAAAAAaAdNIAJoCEdA01eeP9UCJXVlLg=="
77
+ },
78
+ "ep_success_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
+ },
82
+ "_n_updates": 3080,
83
+ "n_steps": 2048,
84
+ "gamma": 0.99,
85
+ "gae_lambda": 0.95,
86
+ "ent_coef": 0.0,
87
+ "vf_coef": 0.5,
88
+ "max_grad_norm": 0.5,
89
+ "batch_size": 64,
90
+ "n_epochs": 10,
91
+ "clip_range": {
92
+ ":type:": "<class 'function'>",
93
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
94
+ },
95
+ "clip_range_vf": null,
96
+ "normalize_advantage": true,
97
+ "target_kl": null
98
+ }
ppo-Pixelcopter-PLE-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc361e2ff9e080816a28416e8da52d38bf5168c6afc3f9998b53725b7b7f7e67
3
+ size 86009
ppo-Pixelcopter-PLE-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10a8eff4efc74ddff328c68e1a2ce4979480cc6eca95e69809033eedae5c90f4
3
+ size 42369
ppo-Pixelcopter-PLE-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Pixelcopter-PLE-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-137-generic-x86_64-with-glibc2.17 # 154-Ubuntu SMP Thu Jan 5 17:03:22 UTC 2023
2
+ - Python: 3.8.15
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (61.5 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 212.7, "std_reward": 193.1269271748505, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T00:58:33.803174"}