File size: 5,415 Bytes
2d1ec9e c30eb28 2d1ec9e 687bb9e 2d1ec9e 687bb9e a13d4a3 687bb9e d9b3274 687bb9e 30bfb67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
license: apache-2.0
datasets:
- the_pile
- guanaco/guanaco
language:
- en
---
# Model Card for Cerebras 2.7b Dollyfied.
This is a finetuned model of Cerebras 2.7b model. using DataBricksLabs Dolly Framework
## Model Details
### Model Description
This is a finetuned version of cerebras' 2.7Billion paramater model that has been trained to follow instructions.
It was accomplished using DataBricks Dolly training tools, and was trained for 2 epochs.
- **Developed by:** Finetuned by Corianas (me) using open source tools
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** EN
- **License:** cc-by-nc-4.0
- **Finetuned from model:** https://huggingface.co/cerebras/Cerebras-GPT-2.7B
- **Finetuned using:** https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html
## Uses
This is a simple GPT chatbot that has been finetuned to understand instructions.
Its knowledge about facts about the world is should be considered suspect at best.
### Direct Use
If you have a use you put it to, Please let me know.
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
Any form of use where any form of accuracy is needed.
FOR THE LOVE OF GOD DO NOT FOLLOW MEDICAL ADVICE FROM THIS.
or financial advice.
[More Information Needed]
## Bias, Risks, and Limitations
Limitations... Yes, I am sure there are so so many.
[More Information Needed]
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** 8xA100s (accomplished while I was downloading the model I was actually training.)
- **Minutes used:** 25
- **Cloud Provider:** LambdaGPU
- **Compute Region:** USA
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Corianas__Quokka_2.7b)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 29.72 |
| ARC (25-shot) | 31.06 |
| HellaSwag (10-shot) | 47.72 |
| MMLU (5-shot) | 24.8 |
| TruthfulQA (0-shot) | 40.14 |
| Winogrande (5-shot) | 55.49 |
| GSM8K (5-shot) | 0.38 |
| DROP (3-shot) | 8.43 |
|