--- language: - en pipeline_tag: text-generation model: PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T dataset: ArmelR/oasst1_guanaco_english license: apache-2.0 --- TinyLLama 1.5T checkpoint trained to answer questions. ``` f"{'prompt'}\n{'completion'}\n" ``` No special formatting, just question, then newline to begin the answer. ``` from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM pipe = pipeline("text-generation", model="Corianas/tiny-llama-miniguanaco-1.5T")# Load model directly tokenizer = AutoTokenizer.from_pretrained("Corianas/tiny-llama-miniguanaco-1.5T") model = AutoModelForCausalLM.from_pretrained("Corianas/tiny-llama-miniguanaco-1.5T") # Run text generation pipeline with our next model prompt = "What is a large language model?" pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=500) result = pipe(f"{prompt}") print(result[0]['generated_text']) ``` Result will have the answer, ending with \ on a new line.