File size: 3,576 Bytes
9b4d480
787577d
 
 
07b19cc
787577d
 
9b4d480
787577d
 
9b4d480
642a988
04872d9
0a0d945
d13c5a0
c287c84
de81924
 
d13c5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099b02b
04872d9
9b7ef2f
04872d9
2d860e7
04872d9
2d860e7
04872d9
2d9173b
d13c5a0
04872d9
a695a4c
 
 
099b02b
d68ebe9
a695a4c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
language:
- en
tags:
- ggml
- causal-lm
- pythia
license: apache-2.0
datasets:
- EleutherAI/the_pile_deduplicated
---

### This repository contains quantized conversions of EleutherAI's Pythia Deduped checkpoints.

If you're starting off, I highly recommend for you to get models from the newest directory [(2023-05-25)](https://huggingface.co/Merry/ggml-pythia-deduped/tree/main/2023-05-25).

[Click here if you're looking for ggmlv1 and ggmlv2 models.](https://huggingface.co/Merry/ggml-pythia-deduped/tree/a695a4c30c01ed9a41200c01f85d47c819fc93dd).

# RAM USAGE
Model | RAM usage
:--:|:--:
Unloaded | 41.3 MiB
|
ggmlv3-pythia-70m-deduped-q4_0.bin | 95.5 MiB
ggmlv3-pythia-160m-deduped-q4_0.bin | 201.1 MiB
ggmlv3-pythia-410m-deduped-q4_0.bin | 415.1 MiB
ggmlv3-pythia-1b-deduped-q4_0.bin | 762.2 MiB
ggmlv3-pythia-1.4b-deduped-q4_0.bin | 1.0 GiB
ggmlv3-pythia-2.8b-deduped-q4_0.bin | 1.9 GiB
|
ggmlv3-pythia-70m-deduped-q5_1.bin | 108.7 MiB
ggmlv3-pythia-160m-deduped-q5_1.bin | 226.9 MiB
ggmlv3-pythia-410m-deduped-q5_1.bin | 494.0 MiB
ggmlv3-pythia-1b-deduped-q5_1.bin | 943.9 MiB
ggmlv3-pythia-1.4b-deduped-q5_1.bin | 1.3 GiB
ggmlv3-pythia-2.8b-deduped-q5_1.bin | 2.3 GiB

*Tested on KoboldCpp with OpenBLAS enabled.*

**Versions:**

**2023-04-20:** *q4_3. Used [commit 05f3079](https://github.com/ggerganov/ggml/tree/05f307971862b83df12fada0c42ee027ba5a82b5/examples/stablelm)*

**2023-04-30:** *q5_0, q5_1, and q8_0, up to 2.8B. I can't upload all conversions of 6.9B and 12B due to my internet. Used [commit 5dd92f4](https://github.com/ggerganov/ggml/tree/5dd92f421ee44f18b8fde0afbf5ca8fc7bf93841/examples/stablelm)*

**2023-05-06:** *q4_0 and q4_2, up to 2.8B. Used [commit ff6e03c](https://github.com/ggerganov/ggml/tree/ff6e03cbcd9bf6e9fa41d49f2495c042efae4dc6/examples/stablelm)*

**2023-05-15:** *New quantization format (ggmlv2). q4_0 and q5_1, up to 2.8B. Used [commit 010203f](https://github.com/ggerganov/ggml/tree/010203f94a85df5c86b773dc5acb698c8e7b1e7b/examples/gpt-neox)*

**2023-05-25:** *New quantization format (ggmlv3). q4_0 and q5_1, up to 2.8B. Used [commit 73ad593](https://github.com/ggerganov/ggml/tree/73ad593cf84f864f0fcfd3a196253575c70d66a2/examples/gpt-neox)*

**Notes:**
- The models have been converted with ggerganov/ggml's gpt-neox conversion script, and tested only on KoboldCpp. Other frontends that support GGML-based conversions of GPT-NeoX *should* work, but I can't promise anything.
- They're sorted by date based on when they were converted so it was easier to track breaking changes. If you're just starting off I highly recommend the latest, which is currently 2023-05-25. Combined with KoboldCpp v1.25.1+ this improved the tokenizer, which in my testing reduces occurrences of broken words like "Alicae" or "Reimu Hai-ku-rei".

# ALTERNATIVES
If you're here because you want a smaller model to run on a device with constrained memory, consider the following, most (if not all) of which have GGML conversions available:
- [**RedPajama-INCITE**](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-3B-v1) (3B, 7B), using the GPT-NeoX architecture
- [**OpenLLaMA**](https://huggingface.co/openlm-research/open_llama_3b_600bt_preview) (3B, 7B), using the LLaMA architecture
- [**MPT-1b-RedPajama-200b**](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b) (1B), using the MPT architecture
- [**RWKV-4 PilePlus**](https://huggingface.co/BlinkDL/rwkv-4-pileplus) (169M, 430M, 1.5B, 3B), using the RWKV architecture
- [**GPT-2**](https://huggingface.co/gpt2-xl) (124M, 355M, 774M, 1.5B), using the GPT-2 architecture