CreativeEvolution commited on
Commit
0eced62
1 Parent(s): 59853a0

First commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.07 +/- 1.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f525518d4e5222496bfbdf7014c1241771e667cd09ff7887408537e032075a5
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1126f68430>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f1126f5fae0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674316782263245812,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAV3bjPhzfa7rXGhg/V3bjPhzfa7rXGhg/V3bjPhzfa7rXGhg/V3bjPhzfa7rXGhg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAk6Qv0O7t75m5Es/QI21P6Ogvz8rsAI/TTiwPgBfID+Hdtu/GkhGP4EuJT90FE8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABXduM+HN9rutcaGD8NZMY7fJ2Ju5T05TtXduM+HN9rutcaGD8NZMY7fJ2Ju5T05TtXduM+HN9rutcaGD8NZMY7fJ2Ju5T05TtXduM+HN9rutcaGD8NZMY7fJ2Ju5T05TuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.44426224 -0.00089978 0.59415954]\n [ 0.44426224 -0.00089978 0.59415954]\n [ 0.44426224 -0.00089978 0.59415954]\n [ 0.44426224 -0.00089978 0.59415954]]",
60
+ "desired_goal": "[[-1.1273806 -0.35885057 0.79645383]\n [ 1.4183731 1.4970897 0.5105006 ]\n [ 0.34417954 0.6264496 -1.7145547 ]\n [ 0.7745377 0.64524084 0.20222646]]",
61
+ "observation": "[[ 0.44426224 -0.00089978 0.59415954 0.00605441 -0.00419968 0.00701768]\n [ 0.44426224 -0.00089978 0.59415954 0.00605441 -0.00419968 0.00701768]\n [ 0.44426224 -0.00089978 0.59415954 0.00605441 -0.00419968 0.00701768]\n [ 0.44426224 -0.00089978 0.59415954 0.00605441 -0.00419968 0.00701768]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7N2NPbZmGjx3oDQ+jhboPeFj1ry841I9egsFvtOwKz1lF2E+C2CFvcbv+71FETE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.06927094 0.0094239 0.17639337]\n [ 0.11332427 -0.02617067 0.05148672]\n [-0.12992659 0.04191668 0.2198158 ]\n [-0.06512459 -0.12301593 0.04322936]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlq/L8J/u/b+UhpRSlIwBbJRLMowBdJRHQKW5wXhwVCZ1fZQoaAZoCWgPQwgoEHaKVcMMwJSGlFKUaBVLMmgWR0CluYTDn/1hdX2UKGgGaAloD0MI527XS1OEDMCUhpRSlGgVSzJoFkdApblHDR+jM3V9lChoBmgJaA9DCBrEB3b8VwvAlIaUUpRoFUsyaBZHQKW5CQXAM2F1fZQoaAZoCWgPQwg8iJ0pdP4EwJSGlFKUaBVLMmgWR0Clut5R8+ibdX2UKGgGaAloD0MIAUwZOKClD8CUhpRSlGgVSzJoFkdApbqhegL7XXV9lChoBmgJaA9DCJIDdjV5ivu/lIaUUpRoFUsyaBZHQKW6Y5Etuk11fZQoaAZoCWgPQwjbNoyC4KEYwJSGlFKUaBVLMmgWR0CluiXEhq0udX2UKGgGaAloD0MIZQETuHUnF8CUhpRSlGgVSzJoFkdApbv5o4+8oXV9lChoBmgJaA9DCDdxcr9DkRLAlIaUUpRoFUsyaBZHQKW7vNGEwnJ1fZQoaAZoCWgPQwgD7KNTVz7/v5SGlFKUaBVLMmgWR0Clu379hqj8dX2UKGgGaAloD0MIj8U2qWhs/L+UhpRSlGgVSzJoFkdApbtBF7Uoa3V9lChoBmgJaA9DCNnts8pM6QrAlIaUUpRoFUsyaBZHQKW9DV+Zw4t1fZQoaAZoCWgPQwh3SDFAognzv5SGlFKUaBVLMmgWR0ClvNBgmZ3LdX2UKGgGaAloD0MIihwibk5lAcCUhpRSlGgVSzJoFkdApbySn752yXV9lChoBmgJaA9DCML8FTJXJgLAlIaUUpRoFUsyaBZHQKW8VMFEAo51fZQoaAZoCWgPQwh7+gj84XcQwJSGlFKUaBVLMmgWR0Clvjqujh1ldX2UKGgGaAloD0MIKnEd44pLBsCUhpRSlGgVSzJoFkdApb3+ATZg5XV9lChoBmgJaA9DCJYkz/V9uBbAlIaUUpRoFUsyaBZHQKW9wHM2WIJ1fZQoaAZoCWgPQwjyYfay7VQLwJSGlFKUaBVLMmgWR0ClvYLzwtrcdX2UKGgGaAloD0MIMJsAw/KnC8CUhpRSlGgVSzJoFkdApb+RVKf4AXV9lChoBmgJaA9DCJZ4QNmUCxjAlIaUUpRoFUsyaBZHQKW/VIbwSap1fZQoaAZoCWgPQwg6evzepl8DwJSGlFKUaBVLMmgWR0ClvxbAtWdVdX2UKGgGaAloD0MIz/i+uFRl9r+UhpRSlGgVSzJoFkdApb7aCDmKZXV9lChoBmgJaA9DCBGMg0vH3A3AlIaUUpRoFUsyaBZHQKXAt5Y5ksl1fZQoaAZoCWgPQwj7JHfYRIYDwJSGlFKUaBVLMmgWR0ClwHq28Zk1dX2UKGgGaAloD0MIm+eIfJdS+b+UhpRSlGgVSzJoFkdApcA9BD5TInV9lChoBmgJaA9DCGWp9X6jHQDAlIaUUpRoFUsyaBZHQKW//vgFX7t1fZQoaAZoCWgPQwimRBK9jGLvv5SGlFKUaBVLMmgWR0ClwcrH2h7FdX2UKGgGaAloD0MIHCPZI9QM97+UhpRSlGgVSzJoFkdApcGN+ocaO3V9lChoBmgJaA9DCLNdoQ+W0QHAlIaUUpRoFUsyaBZHQKXBUC3gDRt1fZQoaAZoCWgPQwi9UwH3PB8HwJSGlFKUaBVLMmgWR0ClwRJbt7a7dX2UKGgGaAloD0MIsK4K1GKw+7+UhpRSlGgVSzJoFkdApcLl9v0h/3V9lChoBmgJaA9DCM+FkV7UrgTAlIaUUpRoFUsyaBZHQKXCqTjebd91fZQoaAZoCWgPQwiInpRJDS3+v5SGlFKUaBVLMmgWR0Clwmt0NjLCdX2UKGgGaAloD0MIog3ABkTI+b+UhpRSlGgVSzJoFkdApcItlmOENHV9lChoBmgJaA9DCF2o/Gt5RRDAlIaUUpRoFUsyaBZHQKXEGug6EJ11fZQoaAZoCWgPQwihD5axoVv2v5SGlFKUaBVLMmgWR0Clw94Sg5BDdX2UKGgGaAloD0MIPgPqzah5+7+UhpRSlGgVSzJoFkdApcOgW+GoJnV9lChoBmgJaA9DCKmDvB5M6grAlIaUUpRoFUsyaBZHQKXDYpDNQj51fZQoaAZoCWgPQwiSdqOP+SAIwJSGlFKUaBVLMmgWR0ClxTyGBWgfdX2UKGgGaAloD0MIxy3m54Zm+L+UhpRSlGgVSzJoFkdApcT/p6hQFnV9lChoBmgJaA9DCH5wPnWsEgbAlIaUUpRoFUsyaBZHQKXEwfGuLaV1fZQoaAZoCWgPQwhxrfawF5oRwJSGlFKUaBVLMmgWR0ClxIQiaAnVdX2UKGgGaAloD0MIoYDtYMT+DMCUhpRSlGgVSzJoFkdApcZYLsrupnV9lChoBmgJaA9DCEYm4NdIUgDAlIaUUpRoFUsyaBZHQKXGGysS00F1fZQoaAZoCWgPQwjpmsk32xzxv5SGlFKUaBVLMmgWR0Clxd05lvqDdX2UKGgGaAloD0MIZttpa0Tw+L+UhpRSlGgVSzJoFkdApcWfWDpTuXV9lChoBmgJaA9DCM+CUN7HEfW/lIaUUpRoFUsyaBZHQKXHbOXVsk91fZQoaAZoCWgPQwiCH9Ww35P2v5SGlFKUaBVLMmgWR0Clxy/9pAUtdX2UKGgGaAloD0MIv5oDBHPUAMCUhpRSlGgVSzJoFkdApcbyN4qwyXV9lChoBmgJaA9DCH1bsFQXMATAlIaUUpRoFUsyaBZHQKXGtGMGX5Z1fZQoaAZoCWgPQwhbBwd7EwMIwJSGlFKUaBVLMmgWR0ClyJBaC+URdX2UKGgGaAloD0MIkuo7vyiB+r+UhpRSlGgVSzJoFkdApchTblA/s3V9lChoBmgJaA9DCMLaGDvhhQfAlIaUUpRoFUsyaBZHQKXIFcMVk+Z1fZQoaAZoCWgPQwjmkqrtJrgPwJSGlFKUaBVLMmgWR0Clx9grxy4ndX2UKGgGaAloD0MICU59IHnHAsCUhpRSlGgVSzJoFkdApcm6H6/IsHV9lChoBmgJaA9DCFEzpIridQrAlIaUUpRoFUsyaBZHQKXJfYZEUj91fZQoaAZoCWgPQwi6awn5oKcAwJSGlFKUaBVLMmgWR0ClyT/B3zMBdX2UKGgGaAloD0MI7//jhAnjFcCUhpRSlGgVSzJoFkdApckCCQLeAXV9lChoBmgJaA9DCL3D7dCwuATAlIaUUpRoFUsyaBZHQKXK6h8IAwR1fZQoaAZoCWgPQwgurvGZ7P8HwJSGlFKUaBVLMmgWR0Clyq1GkN4JdX2UKGgGaAloD0MIXDtREhIp9b+UhpRSlGgVSzJoFkdApcpvllsguHV9lChoBmgJaA9DCMI0DB8Rk/i/lIaUUpRoFUsyaBZHQKXKMcGTs6d1fZQoaAZoCWgPQwi3tvC8VCzzv5SGlFKUaBVLMmgWR0Cly/VFH8TBdX2UKGgGaAloD0MItTf4wmRqCcCUhpRSlGgVSzJoFkdApcu4eo1k2HV9lChoBmgJaA9DCN/F+3H75f+/lIaUUpRoFUsyaBZHQKXLeqPwNLF1fZQoaAZoCWgPQwhoI9dNKW/1v5SGlFKUaBVLMmgWR0ClyzzF+/g0dX2UKGgGaAloD0MIdsHgmjsaEsCUhpRSlGgVSzJoFkdApc0hqGlANXV9lChoBmgJaA9DCEok0csoFgjAlIaUUpRoFUsyaBZHQKXM5PBzmwJ1fZQoaAZoCWgPQwjvjLYqicwHwJSGlFKUaBVLMmgWR0ClzKeaa1CxdX2UKGgGaAloD0MIseB+wAPDAMCUhpRSlGgVSzJoFkdApcxp0wJw9HV9lChoBmgJaA9DCPjgtUsbjv6/lIaUUpRoFUsyaBZHQKXOTfUF0Pp1fZQoaAZoCWgPQwiQwB9+/nvuv5SGlFKUaBVLMmgWR0ClzhEWykbhdX2UKGgGaAloD0MIgCvZsRFoCsCUhpRSlGgVSzJoFkdApc3TUAksz3V9lChoBmgJaA9DCEuRfCWQEu6/lIaUUpRoFUsyaBZHQKXNlYQrc0t1fZQoaAZoCWgPQwjyI37FGi7sv5SGlFKUaBVLMmgWR0Clz3G7rcCYdX2UKGgGaAloD0MI4NdIEoSr87+UhpRSlGgVSzJoFkdApc81tbcGknV9lChoBmgJaA9DCBnG3SBaK+y/lIaUUpRoFUsyaBZHQKXO+MF2V3V1fZQoaAZoCWgPQwizQ/zDlt4MwJSGlFKUaBVLMmgWR0Clzru+AVfvdX2UKGgGaAloD0MIGsHG9e/aFsCUhpRSlGgVSzJoFkdApdCYuK4x13V9lChoBmgJaA9DCIjWijbHOem/lIaUUpRoFUsyaBZHQKXQW+gUUPB1fZQoaAZoCWgPQwioUx7dCCsGwJSGlFKUaBVLMmgWR0Cl0B48+zMSdX2UKGgGaAloD0MIrgyqDU6E/L+UhpRSlGgVSzJoFkdApc/gg/1QInV9lChoBmgJaA9DCIxNK4VAvhjAlIaUUpRoFUsyaBZHQKXRv/4qPOp1fZQoaAZoCWgPQwiT36KTpfYFwJSGlFKUaBVLMmgWR0Cl0YL8R+SbdX2UKGgGaAloD0MImMEYkSjEEsCUhpRSlGgVSzJoFkdApdFFNL127nV9lChoBmgJaA9DCENxx5v8lgHAlIaUUpRoFUsyaBZHQKXRB2zv7WN1fZQoaAZoCWgPQwitM74vLhUOwJSGlFKUaBVLMmgWR0Cl0usQ2/BWdX2UKGgGaAloD0MII4RHG0cs87+UhpRSlGgVSzJoFkdApdKuSlnAZnV9lChoBmgJaA9DCBFuMqoMo/u/lIaUUpRoFUsyaBZHQKXScLEUCaJ1fZQoaAZoCWgPQwgdIJijxy8PwJSGlFKUaBVLMmgWR0Cl0jMc6vJSdX2UKGgGaAloD0MIRnnm5bC787+UhpRSlGgVSzJoFkdApdQJiy6cy3V9lChoBmgJaA9DCP65aMh41Pu/lIaUUpRoFUsyaBZHQKXTzMwDeTF1fZQoaAZoCWgPQwiaP6a1aYwAwJSGlFKUaBVLMmgWR0Cl048dxQzldX2UKGgGaAloD0MILNfbZiqEEcCUhpRSlGgVSzJoFkdApdNRTCLuQnV9lChoBmgJaA9DCGE1lrA2dhbAlIaUUpRoFUsyaBZHQKXVQb8WKuV1fZQoaAZoCWgPQwirQC0GDwMWwJSGlFKUaBVLMmgWR0Cl1QT4k/r0dX2UKGgGaAloD0MID18mipD6CcCUhpRSlGgVSzJoFkdApdTHTkQwsXV9lChoBmgJaA9DCIjZy7bTFhrAlIaUUpRoFUsyaBZHQKXUiW7e2ux1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b4cac7390e37fbffcc70849694042610a17945b5f99015efd167ffe8e95844e
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f270e1448889b8bb3e3885a13ae3cb5bfb826d46c9cd73d58100b939ed95e23d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1126f68430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1126f5fae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674316782263245812, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAV3bjPhzfa7rXGhg/V3bjPhzfa7rXGhg/V3bjPhzfa7rXGhg/V3bjPhzfa7rXGhg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAk6Qv0O7t75m5Es/QI21P6Ogvz8rsAI/TTiwPgBfID+Hdtu/GkhGP4EuJT90FE8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABXduM+HN9rutcaGD8NZMY7fJ2Ju5T05TtXduM+HN9rutcaGD8NZMY7fJ2Ju5T05TtXduM+HN9rutcaGD8NZMY7fJ2Ju5T05TtXduM+HN9rutcaGD8NZMY7fJ2Ju5T05TuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.44426224 -0.00089978 0.59415954]\n [ 0.44426224 -0.00089978 0.59415954]\n [ 0.44426224 -0.00089978 0.59415954]\n [ 0.44426224 -0.00089978 0.59415954]]", "desired_goal": "[[-1.1273806 -0.35885057 0.79645383]\n [ 1.4183731 1.4970897 0.5105006 ]\n [ 0.34417954 0.6264496 -1.7145547 ]\n [ 0.7745377 0.64524084 0.20222646]]", "observation": "[[ 0.44426224 -0.00089978 0.59415954 0.00605441 -0.00419968 0.00701768]\n [ 0.44426224 -0.00089978 0.59415954 0.00605441 -0.00419968 0.00701768]\n [ 0.44426224 -0.00089978 0.59415954 0.00605441 -0.00419968 0.00701768]\n [ 0.44426224 -0.00089978 0.59415954 0.00605441 -0.00419968 0.00701768]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7N2NPbZmGjx3oDQ+jhboPeFj1ry841I9egsFvtOwKz1lF2E+C2CFvcbv+71FETE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06927094 0.0094239 0.17639337]\n [ 0.11332427 -0.02617067 0.05148672]\n [-0.12992659 0.04191668 0.2198158 ]\n [-0.06512459 -0.12301593 0.04322936]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlq/L8J/u/b+UhpRSlIwBbJRLMowBdJRHQKW5wXhwVCZ1fZQoaAZoCWgPQwgoEHaKVcMMwJSGlFKUaBVLMmgWR0CluYTDn/1hdX2UKGgGaAloD0MI527XS1OEDMCUhpRSlGgVSzJoFkdApblHDR+jM3V9lChoBmgJaA9DCBrEB3b8VwvAlIaUUpRoFUsyaBZHQKW5CQXAM2F1fZQoaAZoCWgPQwg8iJ0pdP4EwJSGlFKUaBVLMmgWR0Clut5R8+ibdX2UKGgGaAloD0MIAUwZOKClD8CUhpRSlGgVSzJoFkdApbqhegL7XXV9lChoBmgJaA9DCJIDdjV5ivu/lIaUUpRoFUsyaBZHQKW6Y5Etuk11fZQoaAZoCWgPQwjbNoyC4KEYwJSGlFKUaBVLMmgWR0CluiXEhq0udX2UKGgGaAloD0MIZQETuHUnF8CUhpRSlGgVSzJoFkdApbv5o4+8oXV9lChoBmgJaA9DCDdxcr9DkRLAlIaUUpRoFUsyaBZHQKW7vNGEwnJ1fZQoaAZoCWgPQwgD7KNTVz7/v5SGlFKUaBVLMmgWR0Clu379hqj8dX2UKGgGaAloD0MIj8U2qWhs/L+UhpRSlGgVSzJoFkdApbtBF7Uoa3V9lChoBmgJaA9DCNnts8pM6QrAlIaUUpRoFUsyaBZHQKW9DV+Zw4t1fZQoaAZoCWgPQwh3SDFAognzv5SGlFKUaBVLMmgWR0ClvNBgmZ3LdX2UKGgGaAloD0MIihwibk5lAcCUhpRSlGgVSzJoFkdApbySn752yXV9lChoBmgJaA9DCML8FTJXJgLAlIaUUpRoFUsyaBZHQKW8VMFEAo51fZQoaAZoCWgPQwh7+gj84XcQwJSGlFKUaBVLMmgWR0Clvjqujh1ldX2UKGgGaAloD0MIKnEd44pLBsCUhpRSlGgVSzJoFkdApb3+ATZg5XV9lChoBmgJaA9DCJYkz/V9uBbAlIaUUpRoFUsyaBZHQKW9wHM2WIJ1fZQoaAZoCWgPQwjyYfay7VQLwJSGlFKUaBVLMmgWR0ClvYLzwtrcdX2UKGgGaAloD0MIMJsAw/KnC8CUhpRSlGgVSzJoFkdApb+RVKf4AXV9lChoBmgJaA9DCJZ4QNmUCxjAlIaUUpRoFUsyaBZHQKW/VIbwSap1fZQoaAZoCWgPQwg6evzepl8DwJSGlFKUaBVLMmgWR0ClvxbAtWdVdX2UKGgGaAloD0MIz/i+uFRl9r+UhpRSlGgVSzJoFkdApb7aCDmKZXV9lChoBmgJaA9DCBGMg0vH3A3AlIaUUpRoFUsyaBZHQKXAt5Y5ksl1fZQoaAZoCWgPQwj7JHfYRIYDwJSGlFKUaBVLMmgWR0ClwHq28Zk1dX2UKGgGaAloD0MIm+eIfJdS+b+UhpRSlGgVSzJoFkdApcA9BD5TInV9lChoBmgJaA9DCGWp9X6jHQDAlIaUUpRoFUsyaBZHQKW//vgFX7t1fZQoaAZoCWgPQwimRBK9jGLvv5SGlFKUaBVLMmgWR0ClwcrH2h7FdX2UKGgGaAloD0MIHCPZI9QM97+UhpRSlGgVSzJoFkdApcGN+ocaO3V9lChoBmgJaA9DCLNdoQ+W0QHAlIaUUpRoFUsyaBZHQKXBUC3gDRt1fZQoaAZoCWgPQwi9UwH3PB8HwJSGlFKUaBVLMmgWR0ClwRJbt7a7dX2UKGgGaAloD0MIsK4K1GKw+7+UhpRSlGgVSzJoFkdApcLl9v0h/3V9lChoBmgJaA9DCM+FkV7UrgTAlIaUUpRoFUsyaBZHQKXCqTjebd91fZQoaAZoCWgPQwiInpRJDS3+v5SGlFKUaBVLMmgWR0Clwmt0NjLCdX2UKGgGaAloD0MIog3ABkTI+b+UhpRSlGgVSzJoFkdApcItlmOENHV9lChoBmgJaA9DCF2o/Gt5RRDAlIaUUpRoFUsyaBZHQKXEGug6EJ11fZQoaAZoCWgPQwihD5axoVv2v5SGlFKUaBVLMmgWR0Clw94Sg5BDdX2UKGgGaAloD0MIPgPqzah5+7+UhpRSlGgVSzJoFkdApcOgW+GoJnV9lChoBmgJaA9DCKmDvB5M6grAlIaUUpRoFUsyaBZHQKXDYpDNQj51fZQoaAZoCWgPQwiSdqOP+SAIwJSGlFKUaBVLMmgWR0ClxTyGBWgfdX2UKGgGaAloD0MIxy3m54Zm+L+UhpRSlGgVSzJoFkdApcT/p6hQFnV9lChoBmgJaA9DCH5wPnWsEgbAlIaUUpRoFUsyaBZHQKXEwfGuLaV1fZQoaAZoCWgPQwhxrfawF5oRwJSGlFKUaBVLMmgWR0ClxIQiaAnVdX2UKGgGaAloD0MIoYDtYMT+DMCUhpRSlGgVSzJoFkdApcZYLsrupnV9lChoBmgJaA9DCEYm4NdIUgDAlIaUUpRoFUsyaBZHQKXGGysS00F1fZQoaAZoCWgPQwjpmsk32xzxv5SGlFKUaBVLMmgWR0Clxd05lvqDdX2UKGgGaAloD0MIZttpa0Tw+L+UhpRSlGgVSzJoFkdApcWfWDpTuXV9lChoBmgJaA9DCM+CUN7HEfW/lIaUUpRoFUsyaBZHQKXHbOXVsk91fZQoaAZoCWgPQwiCH9Ww35P2v5SGlFKUaBVLMmgWR0Clxy/9pAUtdX2UKGgGaAloD0MIv5oDBHPUAMCUhpRSlGgVSzJoFkdApcbyN4qwyXV9lChoBmgJaA9DCH1bsFQXMATAlIaUUpRoFUsyaBZHQKXGtGMGX5Z1fZQoaAZoCWgPQwhbBwd7EwMIwJSGlFKUaBVLMmgWR0ClyJBaC+URdX2UKGgGaAloD0MIkuo7vyiB+r+UhpRSlGgVSzJoFkdApchTblA/s3V9lChoBmgJaA9DCMLaGDvhhQfAlIaUUpRoFUsyaBZHQKXIFcMVk+Z1fZQoaAZoCWgPQwjmkqrtJrgPwJSGlFKUaBVLMmgWR0Clx9grxy4ndX2UKGgGaAloD0MICU59IHnHAsCUhpRSlGgVSzJoFkdApcm6H6/IsHV9lChoBmgJaA9DCFEzpIridQrAlIaUUpRoFUsyaBZHQKXJfYZEUj91fZQoaAZoCWgPQwi6awn5oKcAwJSGlFKUaBVLMmgWR0ClyT/B3zMBdX2UKGgGaAloD0MI7//jhAnjFcCUhpRSlGgVSzJoFkdApckCCQLeAXV9lChoBmgJaA9DCL3D7dCwuATAlIaUUpRoFUsyaBZHQKXK6h8IAwR1fZQoaAZoCWgPQwgurvGZ7P8HwJSGlFKUaBVLMmgWR0Clyq1GkN4JdX2UKGgGaAloD0MIXDtREhIp9b+UhpRSlGgVSzJoFkdApcpvllsguHV9lChoBmgJaA9DCMI0DB8Rk/i/lIaUUpRoFUsyaBZHQKXKMcGTs6d1fZQoaAZoCWgPQwi3tvC8VCzzv5SGlFKUaBVLMmgWR0Cly/VFH8TBdX2UKGgGaAloD0MItTf4wmRqCcCUhpRSlGgVSzJoFkdApcu4eo1k2HV9lChoBmgJaA9DCN/F+3H75f+/lIaUUpRoFUsyaBZHQKXLeqPwNLF1fZQoaAZoCWgPQwhoI9dNKW/1v5SGlFKUaBVLMmgWR0ClyzzF+/g0dX2UKGgGaAloD0MIdsHgmjsaEsCUhpRSlGgVSzJoFkdApc0hqGlANXV9lChoBmgJaA9DCEok0csoFgjAlIaUUpRoFUsyaBZHQKXM5PBzmwJ1fZQoaAZoCWgPQwjvjLYqicwHwJSGlFKUaBVLMmgWR0ClzKeaa1CxdX2UKGgGaAloD0MIseB+wAPDAMCUhpRSlGgVSzJoFkdApcxp0wJw9HV9lChoBmgJaA9DCPjgtUsbjv6/lIaUUpRoFUsyaBZHQKXOTfUF0Pp1fZQoaAZoCWgPQwiQwB9+/nvuv5SGlFKUaBVLMmgWR0ClzhEWykbhdX2UKGgGaAloD0MIgCvZsRFoCsCUhpRSlGgVSzJoFkdApc3TUAksz3V9lChoBmgJaA9DCEuRfCWQEu6/lIaUUpRoFUsyaBZHQKXNlYQrc0t1fZQoaAZoCWgPQwjyI37FGi7sv5SGlFKUaBVLMmgWR0Clz3G7rcCYdX2UKGgGaAloD0MI4NdIEoSr87+UhpRSlGgVSzJoFkdApc81tbcGknV9lChoBmgJaA9DCBnG3SBaK+y/lIaUUpRoFUsyaBZHQKXO+MF2V3V1fZQoaAZoCWgPQwizQ/zDlt4MwJSGlFKUaBVLMmgWR0Clzru+AVfvdX2UKGgGaAloD0MIGsHG9e/aFsCUhpRSlGgVSzJoFkdApdCYuK4x13V9lChoBmgJaA9DCIjWijbHOem/lIaUUpRoFUsyaBZHQKXQW+gUUPB1fZQoaAZoCWgPQwioUx7dCCsGwJSGlFKUaBVLMmgWR0Cl0B48+zMSdX2UKGgGaAloD0MIrgyqDU6E/L+UhpRSlGgVSzJoFkdApc/gg/1QInV9lChoBmgJaA9DCIxNK4VAvhjAlIaUUpRoFUsyaBZHQKXRv/4qPOp1fZQoaAZoCWgPQwiT36KTpfYFwJSGlFKUaBVLMmgWR0Cl0YL8R+SbdX2UKGgGaAloD0MImMEYkSjEEsCUhpRSlGgVSzJoFkdApdFFNL127nV9lChoBmgJaA9DCENxx5v8lgHAlIaUUpRoFUsyaBZHQKXRB2zv7WN1fZQoaAZoCWgPQwitM74vLhUOwJSGlFKUaBVLMmgWR0Cl0usQ2/BWdX2UKGgGaAloD0MII4RHG0cs87+UhpRSlGgVSzJoFkdApdKuSlnAZnV9lChoBmgJaA9DCBFuMqoMo/u/lIaUUpRoFUsyaBZHQKXScLEUCaJ1fZQoaAZoCWgPQwgdIJijxy8PwJSGlFKUaBVLMmgWR0Cl0jMc6vJSdX2UKGgGaAloD0MIRnnm5bC787+UhpRSlGgVSzJoFkdApdQJiy6cy3V9lChoBmgJaA9DCP65aMh41Pu/lIaUUpRoFUsyaBZHQKXTzMwDeTF1fZQoaAZoCWgPQwiaP6a1aYwAwJSGlFKUaBVLMmgWR0Cl048dxQzldX2UKGgGaAloD0MILNfbZiqEEcCUhpRSlGgVSzJoFkdApdNRTCLuQnV9lChoBmgJaA9DCGE1lrA2dhbAlIaUUpRoFUsyaBZHQKXVQb8WKuV1fZQoaAZoCWgPQwirQC0GDwMWwJSGlFKUaBVLMmgWR0Cl1QT4k/r0dX2UKGgGaAloD0MID18mipD6CcCUhpRSlGgVSzJoFkdApdTHTkQwsXV9lChoBmgJaA9DCIjZy7bTFhrAlIaUUpRoFUsyaBZHQKXUiW7e2ux1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (334 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.0724400356411934, "std_reward": 1.5500553066443565, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T05:25:02.651546"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be3ff36eb2cc0dd49a1cf9d2d1ed41f52f648c4e0f1d9d1a127726fd116e62c6
3
+ size 3056