diff --git "a/trainer_state.json" "b/trainer_state.json" new file mode 100644--- /dev/null +++ "b/trainer_state.json" @@ -0,0 +1,3823 @@ +{ + "best_metric": 78.72395009365947, + "best_model_checkpoint": "/mounts/work/faeze/attempt/new_setting_outputs/source_adapter/crisis_8_multi/30/checkpoint-640", + "epoch": 200.0, + "global_step": 3200, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 1.0, + "learning_rate": 1.4999999999999999e-05, + "loss": 8.9537, + "step": 16 + }, + { + "epoch": 1.0, + "eval_accuracy": 0.0, + "eval_average_metrics": 0.0, + "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 37.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 31.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}}", + "eval_f1_macro": 0.0, + "eval_f1_micro": 0.0, + "eval_f1_weighted": 0.0, + "eval_loss": 10.101485252380371, + "eval_runtime": 4.8706, + "eval_samples_per_second": 23.816, + "step": 16 + }, + { + "epoch": 2.0, + "learning_rate": 2.9999999999999997e-05, + "loss": 8.431, + "step": 32 + }, + { + "epoch": 2.0, + "eval_accuracy": 0.0, + "eval_average_metrics": 0.0, + "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 37.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 31.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}}", + "eval_f1_macro": 0.0, + "eval_f1_micro": 0.0, + "eval_f1_weighted": 0.0, + "eval_loss": 9.623305320739746, + "eval_runtime": 4.9832, + "eval_samples_per_second": 23.278, + "step": 32 + }, + { + "epoch": 3.0, + "learning_rate": 4.4999999999999996e-05, + "loss": 8.1054, + "step": 48 + }, + { + "epoch": 3.0, + "eval_accuracy": 0.0, + "eval_average_metrics": 0.0, + "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 37.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 31.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}}", + "eval_f1_macro": 0.0, + "eval_f1_micro": 0.0, + "eval_f1_weighted": 0.0, + "eval_loss": 8.642375946044922, + "eval_runtime": 4.9097, + "eval_samples_per_second": 23.627, + "step": 48 + }, + { + "epoch": 4.0, + "learning_rate": 5.9999999999999995e-05, + "loss": 7.202, + "step": 64 + }, + { + "epoch": 4.0, + "eval_accuracy": 0.0, + "eval_average_metrics": 0.0, + "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 37.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 31.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}}", + "eval_f1_macro": 0.0, + "eval_f1_micro": 0.0, + "eval_f1_weighted": 0.0, + "eval_loss": 6.769207000732422, + "eval_runtime": 4.9234, + "eval_samples_per_second": 23.561, + "step": 64 + }, + { + "epoch": 5.0, + "learning_rate": 7.5e-05, + "loss": 5.529, + "step": 80 + }, + { + "epoch": 5.0, + "eval_accuracy": 0.0, + "eval_average_metrics": 0.0, + "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 37.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 31.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 116.0}}", + "eval_f1_macro": 0.0, + "eval_f1_micro": 0.0, + "eval_f1_weighted": 0.0, + "eval_loss": 3.9407148361206055, + "eval_runtime": 4.9848, + "eval_samples_per_second": 23.271, + "step": 80 + }, + { + "epoch": 6.0, + "learning_rate": 8.999999999999999e-05, + "loss": 3.1426, + "step": 96 + }, + { + "epoch": 6.0, + "eval_accuracy": 8.620689655172415, + "eval_average_metrics": 9.650311169018325, + "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 37.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.3225806451612903, \"f1-score\": 0.39215686274509803, \"support\": 31.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.47619047619047616, \"recall\": 0.08620689655172414, \"f1-score\": 0.14598540145985403, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.0625, \"recall\": 0.04032258064516129, \"f1-score\": 0.049019607843137254, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.1336206896551724, \"recall\": 0.08620689655172414, \"f1-score\": 0.10480054090601758, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.08620689655172414, \"recall\": 0.08620689655172414, \"f1-score\": 0.08620689655172414, \"support\": 116.0}}", + "eval_f1_macro": 4.901960784313726, + "eval_f1_micro": 14.598540145985403, + "eval_f1_weighted": 10.480054090601758, + "eval_loss": 1.970729112625122, + "eval_runtime": 2.3636, + "eval_samples_per_second": 49.078, + "step": 96 + }, + { + "epoch": 7.0, + "learning_rate": 0.00010499999999999999, + "loss": 1.5985, + "step": 112 + }, + { + "epoch": 7.0, + "eval_accuracy": 25.0, + "eval_average_metrics": 22.60061719167141, + "eval_classification_report": "{\"0\": {\"precision\": 0.3888888888888889, \"recall\": 0.1891891891891892, \"f1-score\": 0.2545454545454546, \"support\": 37.0}, \"1\": {\"precision\": 0.45161290322580644, \"recall\": 0.45161290322580644, \"f1-score\": 0.45161290322580644, \"support\": 31.0}, \"2\": {\"precision\": 1.0, \"recall\": 0.08333333333333333, \"f1-score\": 0.15384615384615385, \"support\": 12.0}, \"3\": {\"precision\": 0.25, \"recall\": 0.25, \"f1-score\": 0.25, \"support\": 8.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"5\": {\"precision\": 0.08620689655172414, \"recall\": 0.5555555555555556, \"f1-score\": 0.1492537313432836, \"support\": 9.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.25, \"recall\": 0.25, \"f1-score\": 0.25, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.27208858608330244, \"recall\": 0.19121137266298557, \"f1-score\": 0.1574072803700873, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.372109922050469, \"recall\": 0.25, \"f1-score\": 0.24661740729676912, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.25, \"recall\": 0.25, \"f1-score\": 0.25, \"support\": 116.0}}", + "eval_f1_macro": 15.740728037008731, + "eval_f1_micro": 25.0, + "eval_f1_weighted": 24.66174072967691, + "eval_loss": 1.0036473274230957, + "eval_runtime": 3.4309, + "eval_samples_per_second": 33.811, + "step": 112 + }, + { + "epoch": 8.0, + "learning_rate": 0.00011999999999999999, + "loss": 1.0776, + "step": 128 + }, + { + "epoch": 8.0, + "eval_accuracy": 45.689655172413794, + "eval_average_metrics": 41.624940954180445, + "eval_classification_report": "{\"0\": {\"precision\": 0.5277777777777778, \"recall\": 0.5135135135135135, \"f1-score\": 0.5205479452054794, \"support\": 37.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.6451612903225806, \"f1-score\": 0.547945205479452, \"support\": 31.0}, \"2\": {\"precision\": 1.0, \"recall\": 0.25, \"f1-score\": 0.4, \"support\": 12.0}, \"3\": {\"precision\": 0.18181818181818182, \"recall\": 0.5, \"f1-score\": 0.26666666666666666, \"support\": 8.0}, \"4\": {\"precision\": 0.5454545454545454, \"recall\": 0.6666666666666666, \"f1-score\": 0.6, \"support\": 9.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.1111111111111111, \"f1-score\": 0.19999999999999998, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.45689655172413796, \"recall\": 0.45689655172413796, \"f1-score\": 0.45689655172413796, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.46640512265512263, \"recall\": 0.335806572701734, \"f1-score\": 0.31689497716894977, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.531494128476887, \"recall\": 0.45689655172413796, \"f1-score\": 0.4343095575499921, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.45689655172413796, \"recall\": 0.45689655172413796, \"f1-score\": 0.45689655172413796, \"support\": 116.0}}", + "eval_f1_macro": 31.689497716894977, + "eval_f1_micro": 45.689655172413794, + "eval_f1_weighted": 43.43095575499921, + "eval_loss": 0.7534438371658325, + "eval_runtime": 3.37, + "eval_samples_per_second": 34.421, + "step": 128 + }, + { + "epoch": 9.0, + "learning_rate": 0.000135, + "loss": 0.8039, + "step": 144 + }, + { + "epoch": 9.0, + "eval_accuracy": 44.827586206896555, + "eval_average_metrics": 43.28536302540924, + "eval_classification_report": "{\"0\": {\"precision\": 0.48484848484848486, \"recall\": 0.43243243243243246, \"f1-score\": 0.45714285714285713, \"support\": 37.0}, \"1\": {\"precision\": 0.3787878787878788, \"recall\": 0.8064516129032258, \"f1-score\": 0.5154639175257731, \"support\": 31.0}, \"2\": {\"precision\": 1.0, \"recall\": 0.25, \"f1-score\": 0.4, \"support\": 12.0}, \"3\": {\"precision\": 0.5, \"recall\": 0.125, \"f1-score\": 0.2, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.4444444444444444, \"f1-score\": 0.5333333333333333, \"support\": 9.0}, \"5\": {\"precision\": 0.4, \"recall\": 0.2222222222222222, \"f1-score\": 0.2857142857142857, \"support\": 9.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.4482758620689655, \"recall\": 0.4482758620689655, \"f1-score\": 0.4482758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.5537878787878787, \"recall\": 0.41006883900029056, \"f1-score\": 0.42395679921453117, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.48518808777429473, \"recall\": 0.4482758620689655, \"f1-score\": 0.4109059976639073, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.4482758620689655, \"recall\": 0.4482758620689655, \"f1-score\": 0.4482758620689655, \"support\": 116.0}}", + "eval_f1_macro": 42.395679921453116, + "eval_f1_micro": 44.827586206896555, + "eval_f1_weighted": 41.09059976639073, + "eval_loss": 0.6568925380706787, + "eval_runtime": 3.5637, + "eval_samples_per_second": 32.551, + "step": 144 + }, + { + "epoch": 10.0, + "learning_rate": 0.00015, + "loss": 0.7113, + "step": 160 + }, + { + "epoch": 10.0, + "eval_accuracy": 58.620689655172406, + "eval_average_metrics": 59.07490845566709, + "eval_classification_report": "{\"0\": {\"precision\": 0.6, \"recall\": 0.4864864864864865, \"f1-score\": 0.5373134328358209, \"support\": 37.0}, \"1\": {\"precision\": 0.47058823529411764, \"recall\": 0.7741935483870968, \"f1-score\": 0.5853658536585367, \"support\": 31.0}, \"2\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"3\": {\"precision\": 0.6, \"recall\": 0.375, \"f1-score\": 0.4615384615384615, \"support\": 8.0}, \"4\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.1111111111111111, \"f1-score\": 0.19999999999999998, \"support\": 9.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.5862068965517241, \"recall\": 0.5862068965517241, \"f1-score\": 0.5862068965517241, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7393790849673203, \"recall\": 0.6072377821369757, \"f1-score\": 0.6194918649687489, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.639553752535497, \"recall\": 0.5862068965517241, \"f1-score\": 0.5710906801544865, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.5862068965517241, \"recall\": 0.5862068965517241, \"f1-score\": 0.5862068965517241, \"support\": 116.0}}", + "eval_f1_macro": 61.94918649687489, + "eval_f1_micro": 58.620689655172406, + "eval_f1_weighted": 57.10906801544865, + "eval_loss": 0.5802371501922607, + "eval_runtime": 3.4816, + "eval_samples_per_second": 33.318, + "step": 160 + }, + { + "epoch": 11.0, + "learning_rate": 0.000165, + "loss": 0.6802, + "step": 176 + }, + { + "epoch": 11.0, + "eval_accuracy": 60.3448275862069, + "eval_average_metrics": 58.779490028130986, + "eval_classification_report": "{\"0\": {\"precision\": 0.4909090909090909, \"recall\": 0.7297297297297297, \"f1-score\": 0.5869565217391305, \"support\": 37.0}, \"1\": {\"precision\": 0.6363636363636364, \"recall\": 0.6774193548387096, \"f1-score\": 0.65625, \"support\": 31.0}, \"2\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"4\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.1111111111111111, \"f1-score\": 0.19999999999999998, \"support\": 9.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.603448275862069, \"recall\": 0.603448275862069, \"f1-score\": 0.603448275862069, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.678409090909091, \"recall\": 0.5647825244599438, \"f1-score\": 0.5727804943617762, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6119905956112853, \"recall\": 0.603448275862069, \"f1-score\": 0.5715025550393252, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.603448275862069, \"recall\": 0.603448275862069, \"f1-score\": 0.603448275862069, \"support\": 116.0}}", + "eval_f1_macro": 57.278049436177625, + "eval_f1_micro": 60.3448275862069, + "eval_f1_weighted": 57.15025550393252, + "eval_loss": 0.5446867942810059, + "eval_runtime": 3.6015, + "eval_samples_per_second": 32.209, + "step": 176 + }, + { + "epoch": 12.0, + "learning_rate": 0.00017999999999999998, + "loss": 0.6489, + "step": 192 + }, + { + "epoch": 12.0, + "eval_accuracy": 63.793103448275865, + "eval_average_metrics": 64.3616681265736, + "eval_classification_report": "{\"0\": {\"precision\": 0.65625, \"recall\": 0.5675675675675675, \"f1-score\": 0.6086956521739131, \"support\": 37.0}, \"1\": {\"precision\": 0.5945945945945946, \"recall\": 0.7096774193548387, \"f1-score\": 0.6470588235294118, \"support\": 31.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.8333333333333334, \"f1-score\": 0.7142857142857143, \"support\": 12.0}, \"3\": {\"precision\": 0.5, \"recall\": 0.375, \"f1-score\": 0.42857142857142855, \"support\": 8.0}, \"4\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"5\": {\"precision\": 0.5, \"recall\": 0.3333333333333333, \"f1-score\": 0.4, \"support\": 9.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6379310344827587, \"recall\": 0.6379310344827587, \"f1-score\": 0.6379310344827587, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.6782305743243243, \"recall\": 0.6718084011430785, \"f1-score\": 0.6683249043324424, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6350317451071762, \"recall\": 0.6379310344827587, \"f1-score\": 0.6302797517649844, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6379310344827587, \"recall\": 0.6379310344827587, \"f1-score\": 0.6379310344827587, \"support\": 116.0}}", + "eval_f1_macro": 66.83249043324425, + "eval_f1_micro": 63.793103448275865, + "eval_f1_weighted": 63.027975176498444, + "eval_loss": 0.5566401481628418, + "eval_runtime": 3.4249, + "eval_samples_per_second": 33.87, + "step": 192 + }, + { + "epoch": 13.0, + "learning_rate": 0.000195, + "loss": 0.6402, + "step": 208 + }, + { + "epoch": 13.0, + "eval_accuracy": 62.93103448275862, + "eval_average_metrics": 64.37467697302756, + "eval_classification_report": "{\"0\": {\"precision\": 0.6129032258064516, \"recall\": 0.5135135135135135, \"f1-score\": 0.5588235294117647, \"support\": 37.0}, \"1\": {\"precision\": 0.59375, \"recall\": 0.6129032258064516, \"f1-score\": 0.6031746031746031, \"support\": 31.0}, \"2\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"3\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.5714285714285714, \"recall\": 0.4444444444444444, \"f1-score\": 0.5, \"support\": 9.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6293103448275862, \"recall\": 0.6293103448275862, \"f1-score\": 0.6293103448275862, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.6807878081819614, \"recall\": 0.7119826479705511, \"f1-score\": 0.690999557717824, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6301177531450752, \"recall\": 0.6293103448275862, \"f1-score\": 0.6253668315481062, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6293103448275862, \"recall\": 0.6293103448275862, \"f1-score\": 0.6293103448275862, \"support\": 116.0}}", + "eval_f1_macro": 69.09995577178239, + "eval_f1_micro": 62.93103448275862, + "eval_f1_weighted": 62.536683154810625, + "eval_loss": 0.5110341310501099, + "eval_runtime": 3.2823, + "eval_samples_per_second": 35.341, + "step": 208 + }, + { + "epoch": 14.0, + "learning_rate": 0.00020999999999999998, + "loss": 0.5644, + "step": 224 + }, + { + "epoch": 14.0, + "eval_accuracy": 63.793103448275865, + "eval_average_metrics": 65.95461408438922, + "eval_classification_report": "{\"0\": {\"precision\": 0.5208333333333334, \"recall\": 0.6756756756756757, \"f1-score\": 0.5882352941176472, \"support\": 37.0}, \"1\": {\"precision\": 0.6363636363636364, \"recall\": 0.45161290322580644, \"f1-score\": 0.5283018867924528, \"support\": 31.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.625, \"f1-score\": 0.7692307692307693, \"support\": 8.0}, \"4\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"5\": {\"precision\": 0.8333333333333334, \"recall\": 0.5555555555555556, \"f1-score\": 0.6666666666666667, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6379310344827587, \"recall\": 0.6379310344827587, \"f1-score\": 0.6379310344827587, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7668718434343433, \"recall\": 0.7120916279182408, \"f1-score\": 0.7259744050736515, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6620526384535005, \"recall\": 0.6379310344827587, \"f1-score\": 0.6363480893364003, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6379310344827587, \"recall\": 0.6379310344827587, \"f1-score\": 0.6379310344827587, \"support\": 116.0}}", + "eval_f1_macro": 72.59744050736515, + "eval_f1_micro": 63.793103448275865, + "eval_f1_weighted": 63.63480893364003, + "eval_loss": 0.4921715259552002, + "eval_runtime": 3.3988, + "eval_samples_per_second": 34.13, + "step": 224 + }, + { + "epoch": 15.0, + "learning_rate": 0.000225, + "loss": 0.5622, + "step": 240 + }, + { + "epoch": 15.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.4741806923919, + "eval_classification_report": "{\"0\": {\"precision\": 0.7307692307692307, \"recall\": 0.5135135135135135, \"f1-score\": 0.6031746031746031, \"support\": 37.0}, \"1\": {\"precision\": 0.5510204081632653, \"recall\": 0.8709677419354839, \"f1-score\": 0.6749999999999999, \"support\": 31.0}, \"2\": {\"precision\": 0.8333333333333334, \"recall\": 0.8333333333333334, \"f1-score\": 0.8333333333333334, \"support\": 12.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"4\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"5\": {\"precision\": 0.8333333333333334, \"recall\": 0.5555555555555556, \"f1-score\": 0.6666666666666667, \"support\": 9.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8020887842316414, \"recall\": 0.7303518235977914, \"f1-score\": 0.752529761904762, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7241469532109925, \"recall\": 0.6896551724137931, \"f1-score\": 0.6871271209633278, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.25297619047619, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 68.71271209633278, + "eval_loss": 0.48315221071243286, + "eval_runtime": 3.5797, + "eval_samples_per_second": 32.405, + "step": 240 + }, + { + "epoch": 16.0, + "learning_rate": 0.00023999999999999998, + "loss": 0.4999, + "step": 256 + }, + { + "epoch": 16.0, + "eval_accuracy": 65.51724137931035, + "eval_average_metrics": 67.06281768118309, + "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.5945945945945946, \"f1-score\": 0.6285714285714286, \"support\": 37.0}, \"1\": {\"precision\": 0.6363636363636364, \"recall\": 0.45161290322580644, \"f1-score\": 0.5283018867924528, \"support\": 31.0}, \"2\": {\"precision\": 0.7142857142857143, \"recall\": 0.8333333333333334, \"f1-score\": 0.7692307692307692, \"support\": 12.0}, \"3\": {\"precision\": 0.46153846153846156, \"recall\": 0.75, \"f1-score\": 0.5714285714285714, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6551724137931034, \"recall\": 0.6551724137931034, \"f1-score\": 0.6551724137931034, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.6965992340992341, \"recall\": 0.7731370483386613, \"f1-score\": 0.7245349403988928, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6595097431304328, \"recall\": 0.6551724137931034, \"f1-score\": 0.6476329392622238, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6551724137931034, \"recall\": 0.6551724137931034, \"f1-score\": 0.6551724137931034, \"support\": 116.0}}", + "eval_f1_macro": 72.45349403988928, + "eval_f1_micro": 65.51724137931035, + "eval_f1_weighted": 64.76329392622237, + "eval_loss": 0.4697711169719696, + "eval_runtime": 3.3779, + "eval_samples_per_second": 34.34, + "step": 256 + }, + { + "epoch": 17.0, + "learning_rate": 0.00025499999999999996, + "loss": 0.5045, + "step": 272 + }, + { + "epoch": 17.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 73.61333143576768, + "eval_classification_report": "{\"0\": {\"precision\": 0.84, \"recall\": 0.5675675675675675, \"f1-score\": 0.6774193548387097, \"support\": 37.0}, \"1\": {\"precision\": 0.696969696969697, \"recall\": 0.7419354838709677, \"f1-score\": 0.71875, \"support\": 31.0}, \"2\": {\"precision\": 0.55, \"recall\": 0.9166666666666666, \"f1-score\": 0.6874999999999999, \"support\": 12.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7678156565656565, \"recall\": 0.8025767703187057, \"f1-score\": 0.7737931698216922, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7503108672936258, \"recall\": 0.7241379310344828, \"f1-score\": 0.7224642255400491, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 77.37931698216923, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.24642255400491, + "eval_loss": 0.45069536566734314, + "eval_runtime": 3.2935, + "eval_samples_per_second": 35.221, + "step": 272 + }, + { + "epoch": 18.0, + "learning_rate": 0.00027, + "loss": 0.475, + "step": 288 + }, + { + "epoch": 18.0, + "eval_accuracy": 67.24137931034483, + "eval_average_metrics": 68.48610757420332, + "eval_classification_report": "{\"0\": {\"precision\": 0.8666666666666667, \"recall\": 0.35135135135135137, \"f1-score\": 0.5000000000000001, \"support\": 37.0}, \"1\": {\"precision\": 0.631578947368421, \"recall\": 0.7741935483870968, \"f1-score\": 0.6956521739130435, \"support\": 31.0}, \"2\": {\"precision\": 0.5238095238095238, \"recall\": 0.9166666666666666, \"f1-score\": 0.6666666666666667, \"support\": 12.0}, \"3\": {\"precision\": 0.8571428571428571, \"recall\": 0.75, \"f1-score\": 0.7999999999999999, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6724137931034483, \"recall\": 0.6724137931034483, \"f1-score\": 0.6724137931034483, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7402319172056014, \"recall\": 0.7934708902450838, \"f1-score\": 0.7408042091394493, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7256240281194908, \"recall\": 0.6724137931034483, \"f1-score\": 0.6538125076217871, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6724137931034483, \"recall\": 0.6724137931034483, \"f1-score\": 0.6724137931034483, \"support\": 116.0}}", + "eval_f1_macro": 74.08042091394493, + "eval_f1_micro": 67.24137931034483, + "eval_f1_weighted": 65.38125076217871, + "eval_loss": 0.515495777130127, + "eval_runtime": 3.4272, + "eval_samples_per_second": 33.847, + "step": 288 + }, + { + "epoch": 19.0, + "learning_rate": 0.000285, + "loss": 0.4284, + "step": 304 + }, + { + "epoch": 19.0, + "eval_accuracy": 63.793103448275865, + "eval_average_metrics": 65.0121604291279, + "eval_classification_report": "{\"0\": {\"precision\": 0.9166666666666666, \"recall\": 0.2972972972972973, \"f1-score\": 0.4489795918367347, \"support\": 37.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.9032258064516129, \"f1-score\": 0.6436781609195402, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.75, \"f1-score\": 0.8571428571428571, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.3333333333333333, \"f1-score\": 0.46153846153846156, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6379310344827587, \"recall\": 0.6379310344827587, \"f1-score\": 0.6379310344827587, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7850193107546048, \"recall\": 0.7229820546352804, \"f1-score\": 0.7112353915925345, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7409720941668202, \"recall\": 0.6379310344827587, \"f1-score\": 0.6133889566070643, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6379310344827587, \"recall\": 0.6379310344827587, \"f1-score\": 0.6379310344827587, \"support\": 116.0}}", + "eval_f1_macro": 71.12353915925344, + "eval_f1_micro": 63.793103448275865, + "eval_f1_weighted": 61.33889566070643, + "eval_loss": 0.5142894387245178, + "eval_runtime": 3.3727, + "eval_samples_per_second": 34.394, + "step": 304 + }, + { + "epoch": 20.0, + "learning_rate": 0.0003, + "loss": 0.4278, + "step": 320 + }, + { + "epoch": 20.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.36884149498039, + "eval_classification_report": "{\"0\": {\"precision\": 0.875, \"recall\": 0.5675675675675675, \"f1-score\": 0.6885245901639344, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.7741935483870968, \"f1-score\": 0.7164179104477612, \"support\": 31.0}, \"2\": {\"precision\": 0.6875, \"recall\": 0.9166666666666666, \"f1-score\": 0.7857142857142857, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7843883547008547, \"recall\": 0.8222340283832219, \"f1-score\": 0.793560633644283, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.765776967285588, \"recall\": 0.7413793103448276, \"f1-score\": 0.7384344054652772, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 79.3560633644283, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 73.84344054652772, + "eval_loss": 0.450377881526947, + "eval_runtime": 3.3556, + "eval_samples_per_second": 34.569, + "step": 320 + }, + { + "epoch": 21.0, + "learning_rate": 0.00029833333333333334, + "loss": 0.4046, + "step": 336 + }, + { + "epoch": 21.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.69452812202601, + "eval_classification_report": "{\"0\": {\"precision\": 0.7931034482758621, \"recall\": 0.6216216216216216, \"f1-score\": 0.696969696969697, \"support\": 37.0}, \"1\": {\"precision\": 0.7241379310344828, \"recall\": 0.6774193548387096, \"f1-score\": 0.7, \"support\": 31.0}, \"2\": {\"precision\": 0.6470588235294118, \"recall\": 0.9166666666666666, \"f1-score\": 0.7586206896551724, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7953772689447132, \"recall\": 0.8307828998353192, \"f1-score\": 0.803004948060729, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7616057833542271, \"recall\": 0.7413793103448276, \"f1-score\": 0.7420175561306567, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 80.30049480607289, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.20175561306567, + "eval_loss": 0.4572910964488983, + "eval_runtime": 3.2727, + "eval_samples_per_second": 35.445, + "step": 336 + }, + { + "epoch": 22.0, + "learning_rate": 0.00029666666666666665, + "loss": 0.3417, + "step": 352 + }, + { + "epoch": 22.0, + "eval_accuracy": 77.58620689655173, + "eval_average_metrics": 78.92174534259976, + "eval_classification_report": "{\"0\": {\"precision\": 0.8275862068965517, \"recall\": 0.6486486486486487, \"f1-score\": 0.7272727272727273, \"support\": 37.0}, \"1\": {\"precision\": 0.6944444444444444, \"recall\": 0.8064516129032258, \"f1-score\": 0.746268656716418, \"support\": 31.0}, \"2\": {\"precision\": 0.9090909090909091, \"recall\": 0.8333333333333334, \"f1-score\": 0.8695652173913043, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7758620689655172, \"recall\": 0.7758620689655172, \"f1-score\": 0.7758620689655173, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8278800940438871, \"recall\": 0.8398736438050954, \"f1-score\": 0.8284041981884293, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7912485437009811, \"recall\": 0.7758620689655172, \"f1-score\": 0.7767414775845263, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7758620689655172, \"recall\": 0.7758620689655172, \"f1-score\": 0.7758620689655172, \"support\": 116.0}}", + "eval_f1_macro": 82.84041981884293, + "eval_f1_micro": 77.58620689655173, + "eval_f1_weighted": 77.67414775845263, + "eval_loss": 0.4321235418319702, + "eval_runtime": 3.4384, + "eval_samples_per_second": 33.737, + "step": 352 + }, + { + "epoch": 23.0, + "learning_rate": 0.00029499999999999996, + "loss": 0.3963, + "step": 368 + }, + { + "epoch": 23.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.26032788592248, + "eval_classification_report": "{\"0\": {\"precision\": 0.7777777777777778, \"recall\": 0.5675675675675675, \"f1-score\": 0.65625, \"support\": 37.0}, \"1\": {\"precision\": 0.6923076923076923, \"recall\": 0.5806451612903226, \"f1-score\": 0.631578947368421, \"support\": 31.0}, \"2\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"3\": {\"precision\": 0.6363636363636364, \"recall\": 0.875, \"f1-score\": 0.7368421052631579, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"6\": {\"precision\": 0.5, \"recall\": 0.7777777777777778, \"f1-score\": 0.6086956521739131, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7147921522921523, \"recall\": 0.8015127022183474, \"f1-score\": 0.7450799290097774, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7081457814216434, \"recall\": 0.6896551724137931, \"f1-score\": 0.6860228415995353, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 74.50799290097774, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 68.60228415995353, + "eval_loss": 0.4652164578437805, + "eval_runtime": 3.4473, + "eval_samples_per_second": 33.649, + "step": 368 + }, + { + "epoch": 24.0, + "learning_rate": 0.00029333333333333327, + "loss": 0.3639, + "step": 384 + }, + { + "epoch": 24.0, + "eval_accuracy": 76.72413793103449, + "eval_average_metrics": 78.07307772096058, + "eval_classification_report": "{\"0\": {\"precision\": 0.8888888888888888, \"recall\": 0.6486486486486487, \"f1-score\": 0.75, \"support\": 37.0}, \"1\": {\"precision\": 0.6857142857142857, \"recall\": 0.7741935483870968, \"f1-score\": 0.7272727272727272, \"support\": 31.0}, \"2\": {\"precision\": 0.7142857142857143, \"recall\": 0.8333333333333334, \"f1-score\": 0.7692307692307692, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7672413793103449, \"recall\": 0.7672413793103449, \"f1-score\": 0.7672413793103448, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8175796425796426, \"recall\": 0.8358413857405793, \"f1-score\": 0.818535753462224, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7929585739930567, \"recall\": 0.7672413793103449, \"f1-score\": 0.7699045967555096, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7672413793103449, \"recall\": 0.7672413793103449, \"f1-score\": 0.7672413793103449, \"support\": 116.0}}", + "eval_f1_macro": 81.8535753462224, + "eval_f1_micro": 76.72413793103448, + "eval_f1_weighted": 76.99045967555097, + "eval_loss": 0.460846483707428, + "eval_runtime": 3.6721, + "eval_samples_per_second": 31.589, + "step": 384 + }, + { + "epoch": 25.0, + "learning_rate": 0.00029166666666666664, + "loss": 0.3298, + "step": 400 + }, + { + "epoch": 25.0, + "eval_accuracy": 77.58620689655173, + "eval_average_metrics": 78.92174534259976, + "eval_classification_report": "{\"0\": {\"precision\": 0.8275862068965517, \"recall\": 0.6486486486486487, \"f1-score\": 0.7272727272727273, \"support\": 37.0}, \"1\": {\"precision\": 0.6944444444444444, \"recall\": 0.8064516129032258, \"f1-score\": 0.746268656716418, \"support\": 31.0}, \"2\": {\"precision\": 0.9090909090909091, \"recall\": 0.8333333333333334, \"f1-score\": 0.8695652173913043, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7758620689655172, \"recall\": 0.7758620689655172, \"f1-score\": 0.7758620689655173, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8278800940438871, \"recall\": 0.8398736438050954, \"f1-score\": 0.8284041981884293, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7912485437009811, \"recall\": 0.7758620689655172, \"f1-score\": 0.7767414775845263, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7758620689655172, \"recall\": 0.7758620689655172, \"f1-score\": 0.7758620689655172, \"support\": 116.0}}", + "eval_f1_macro": 82.84041981884293, + "eval_f1_micro": 77.58620689655173, + "eval_f1_weighted": 77.67414775845263, + "eval_loss": 0.4687099754810333, + "eval_runtime": 3.4881, + "eval_samples_per_second": 33.256, + "step": 400 + }, + { + "epoch": 26.0, + "learning_rate": 0.00029, + "loss": 0.3105, + "step": 416 + }, + { + "epoch": 26.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.66756776181802, + "eval_classification_report": "{\"0\": {\"precision\": 0.78125, \"recall\": 0.6756756756756757, \"f1-score\": 0.7246376811594203, \"support\": 37.0}, \"1\": {\"precision\": 0.7307692307692307, \"recall\": 0.6129032258064516, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.5789473684210527, \"recall\": 0.9166666666666666, \"f1-score\": 0.7096774193548387, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.792936481464442, \"recall\": 0.8294751404630436, \"f1-score\": 0.8029004986753935, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.75672579178988, \"recall\": 0.7413793103448276, \"f1-score\": 0.741043591107672, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 80.29004986753935, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.1043591107672, + "eval_loss": 0.482342004776001, + "eval_runtime": 3.3959, + "eval_samples_per_second": 34.159, + "step": 416 + }, + { + "epoch": 27.0, + "learning_rate": 0.0002883333333333333, + "loss": 0.2958, + "step": 432 + }, + { + "epoch": 27.0, + "eval_accuracy": 75.86206896551724, + "eval_average_metrics": 77.20577592008087, + "eval_classification_report": "{\"0\": {\"precision\": 0.8518518518518519, \"recall\": 0.6216216216216216, \"f1-score\": 0.7187499999999999, \"support\": 37.0}, \"1\": {\"precision\": 0.6857142857142857, \"recall\": 0.7741935483870968, \"f1-score\": 0.7272727272727272, \"support\": 31.0}, \"2\": {\"precision\": 0.7142857142857143, \"recall\": 0.8333333333333334, \"f1-score\": 0.7692307692307692, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8054713804713804, \"recall\": 0.8324630073622009, \"f1-score\": 0.81242256007881, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7765031265031265, \"recall\": 0.7586206896551724, \"f1-score\": 0.75856709741408, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}}", + "eval_f1_macro": 81.242256007881, + "eval_f1_micro": 75.86206896551724, + "eval_f1_weighted": 75.856709741408, + "eval_loss": 0.5036689639091492, + "eval_runtime": 3.2396, + "eval_samples_per_second": 35.807, + "step": 432 + }, + { + "epoch": 28.0, + "learning_rate": 0.0002866666666666667, + "loss": 0.2824, + "step": 448 + }, + { + "epoch": 28.0, + "eval_accuracy": 75.86206896551724, + "eval_average_metrics": 77.06442117505777, + "eval_classification_report": "{\"0\": {\"precision\": 0.8333333333333334, \"recall\": 0.6756756756756757, \"f1-score\": 0.746268656716418, \"support\": 37.0}, \"1\": {\"precision\": 0.6875, \"recall\": 0.7096774193548387, \"f1-score\": 0.6984126984126984, \"support\": 31.0}, \"2\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7900458916083917, \"recall\": 0.8311552479899253, \"f1-score\": 0.8071374569728389, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7661340694745868, \"recall\": 0.7586206896551724, \"f1-score\": 0.7581980107191272, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}}", + "eval_f1_macro": 80.71374569728388, + "eval_f1_micro": 75.86206896551724, + "eval_f1_weighted": 75.81980107191272, + "eval_loss": 0.5020861625671387, + "eval_runtime": 3.6042, + "eval_samples_per_second": 32.185, + "step": 448 + }, + { + "epoch": 29.0, + "learning_rate": 0.000285, + "loss": 0.2597, + "step": 464 + }, + { + "epoch": 29.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 73.93019027131118, + "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6756756756756757, \"f1-score\": 0.7042253521126761, \"support\": 37.0}, \"1\": {\"precision\": 0.7727272727272727, \"recall\": 0.5483870967741935, \"f1-score\": 0.6415094339622641, \"support\": 31.0}, \"2\": {\"precision\": 0.6111111111111112, \"recall\": 0.9166666666666666, \"f1-score\": 0.7333333333333334, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.775842417386535, \"recall\": 0.8214106243340114, \"f1-score\": 0.7869037169462363, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7438122644765646, \"recall\": 0.7241379310344828, \"f1-score\": 0.722028031837245, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.69037169462362, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.2028031837245, + "eval_loss": 0.5290536880493164, + "eval_runtime": 3.3208, + "eval_samples_per_second": 34.931, + "step": 464 + }, + { + "epoch": 30.0, + "learning_rate": 0.0002833333333333333, + "loss": 0.2633, + "step": 480 + }, + { + "epoch": 30.0, + "eval_accuracy": 75.86206896551724, + "eval_average_metrics": 77.22987439146269, + "eval_classification_report": "{\"0\": {\"precision\": 0.8518518518518519, \"recall\": 0.6216216216216216, \"f1-score\": 0.7187499999999999, \"support\": 37.0}, \"1\": {\"precision\": 0.627906976744186, \"recall\": 0.8709677419354839, \"f1-score\": 0.7297297297297297, \"support\": 31.0}, \"2\": {\"precision\": 0.8333333333333334, \"recall\": 0.8333333333333334, \"f1-score\": 0.8333333333333334, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8349698535745047, \"recall\": 0.8028931148890827, \"f1-score\": 0.8117068960407776, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7869278861861059, \"recall\": 0.7586206896551724, \"f1-score\": 0.7602467003073853, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}}", + "eval_f1_macro": 81.17068960407777, + "eval_f1_micro": 75.86206896551724, + "eval_f1_weighted": 76.02467003073853, + "eval_loss": 0.5926069617271423, + "eval_runtime": 3.333, + "eval_samples_per_second": 34.804, + "step": 480 + }, + { + "epoch": 31.0, + "learning_rate": 0.00028166666666666666, + "loss": 0.2517, + "step": 496 + }, + { + "epoch": 31.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.34573026466798, + "eval_classification_report": "{\"0\": {\"precision\": 0.84, \"recall\": 0.5675675675675675, \"f1-score\": 0.6774193548387097, \"support\": 37.0}, \"1\": {\"precision\": 0.6551724137931034, \"recall\": 0.6129032258064516, \"f1-score\": 0.6333333333333333, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7391759243982474, \"recall\": 0.8055449602828635, \"f1-score\": 0.7605606758832566, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7244259226598546, \"recall\": 0.6982758620689655, \"f1-score\": 0.6967168105655314, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.05606758832566, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.67168105655314, + "eval_loss": 0.5392365455627441, + "eval_runtime": 3.3611, + "eval_samples_per_second": 34.513, + "step": 496 + }, + { + "epoch": 32.0, + "learning_rate": 0.00028, + "loss": 0.2288, + "step": 512 + }, + { + "epoch": 32.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.86330417026105, + "eval_classification_report": "{\"0\": {\"precision\": 0.8695652173913043, \"recall\": 0.5405405405405406, \"f1-score\": 0.6666666666666666, \"support\": 37.0}, \"1\": {\"precision\": 0.6486486486486487, \"recall\": 0.7741935483870968, \"f1-score\": 0.7058823529411764, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7948718015853566, \"recall\": 0.8223278722270657, \"f1-score\": 0.7980533017804823, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7639101030493569, \"recall\": 0.7327586206896551, \"f1-score\": 0.7309616236506492, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 79.80533017804822, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.09616236506493, + "eval_loss": 0.575758159160614, + "eval_runtime": 3.2389, + "eval_samples_per_second": 35.815, + "step": 512 + }, + { + "epoch": 33.0, + "learning_rate": 0.00027833333333333334, + "loss": 0.2447, + "step": 528 + }, + { + "epoch": 33.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.29736110832305, + "eval_classification_report": "{\"0\": {\"precision\": 0.84, \"recall\": 0.5675675675675675, \"f1-score\": 0.6774193548387097, \"support\": 37.0}, \"1\": {\"precision\": 0.7, \"recall\": 0.6774193548387096, \"f1-score\": 0.6885245901639343, \"support\": 31.0}, \"2\": {\"precision\": 0.4782608695652174, \"recall\": 0.9166666666666666, \"f1-score\": 0.6285714285714286, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7977371541501976, \"recall\": 0.8240261430785624, \"f1-score\": 0.7961281471869552, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7654470492026714, \"recall\": 0.7241379310344828, \"f1-score\": 0.7274904350770013, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 79.61281471869552, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.74904350770012, + "eval_loss": 0.5707700848579407, + "eval_runtime": 3.3266, + "eval_samples_per_second": 34.87, + "step": 528 + }, + { + "epoch": 34.0, + "learning_rate": 0.00027666666666666665, + "loss": 0.2206, + "step": 544 + }, + { + "epoch": 34.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 72.88133236370803, + "eval_classification_report": "{\"0\": {\"precision\": 0.8333333333333334, \"recall\": 0.6756756756756757, \"f1-score\": 0.746268656716418, \"support\": 37.0}, \"1\": {\"precision\": 0.6296296296296297, \"recall\": 0.5483870967741935, \"f1-score\": 0.5862068965517241, \"support\": 31.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"3\": {\"precision\": 0.6363636363636364, \"recall\": 0.875, \"f1-score\": 0.7368421052631579, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.745686026936027, \"recall\": 0.8109939576673447, \"f1-score\": 0.7707017443534495, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7261915128294438, \"recall\": 0.7155172413793104, \"f1-score\": 0.7135170674362505, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.07017443534495, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.35170674362506, + "eval_loss": 0.5683773756027222, + "eval_runtime": 3.3386, + "eval_samples_per_second": 34.746, + "step": 544 + }, + { + "epoch": 35.0, + "learning_rate": 0.00027499999999999996, + "loss": 0.202, + "step": 560 + }, + { + "epoch": 35.0, + "eval_accuracy": 77.58620689655173, + "eval_average_metrics": 78.8294499458954, + "eval_classification_report": "{\"0\": {\"precision\": 0.8846153846153846, \"recall\": 0.6216216216216216, \"f1-score\": 0.7301587301587302, \"support\": 37.0}, \"1\": {\"precision\": 0.6842105263157895, \"recall\": 0.8387096774193549, \"f1-score\": 0.7536231884057972, \"support\": 31.0}, \"2\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6428571428571429, \"recall\": 1.0, \"f1-score\": 0.782608695652174, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7758620689655172, \"recall\": 0.7758620689655172, \"f1-score\": 0.7758620689655173, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8309475612107191, \"recall\": 0.8405275234912332, \"f1-score\": 0.8259458856006171, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.8013601643365708, \"recall\": 0.7758620689655172, \"f1-score\": 0.7755079743041644, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7758620689655172, \"recall\": 0.7758620689655172, \"f1-score\": 0.7758620689655172, \"support\": 116.0}}", + "eval_f1_macro": 82.59458856006171, + "eval_f1_micro": 77.58620689655173, + "eval_f1_weighted": 77.55079743041644, + "eval_loss": 0.5666896104812622, + "eval_runtime": 3.378, + "eval_samples_per_second": 34.339, + "step": 560 + }, + { + "epoch": 36.0, + "learning_rate": 0.00027333333333333333, + "loss": 0.186, + "step": 576 + }, + { + "epoch": 36.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.37085708908566, + "eval_classification_report": "{\"0\": {\"precision\": 0.8275862068965517, \"recall\": 0.6486486486486487, \"f1-score\": 0.7272727272727273, \"support\": 37.0}, \"1\": {\"precision\": 0.6774193548387096, \"recall\": 0.6774193548387096, \"f1-score\": 0.6774193548387096, \"support\": 31.0}, \"2\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"3\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7707694403606529, \"recall\": 0.8237446115470308, \"f1-score\": 0.7916579388353582, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7515407897690894, \"recall\": 0.7413793103448276, \"f1-score\": 0.7404177240384137, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 79.16579388353581, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.04177240384136, + "eval_loss": 0.5301358699798584, + "eval_runtime": 3.3668, + "eval_samples_per_second": 34.454, + "step": 576 + }, + { + "epoch": 37.0, + "learning_rate": 0.00027166666666666664, + "loss": 0.1676, + "step": 592 + }, + { + "epoch": 37.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.62875183855209, + "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.7027027027027027, \"f1-score\": 0.7323943661971832, \"support\": 37.0}, \"1\": {\"precision\": 0.76, \"recall\": 0.6129032258064516, \"f1-score\": 0.6785714285714285, \"support\": 31.0}, \"2\": {\"precision\": 0.5789473684210527, \"recall\": 0.9166666666666666, \"f1-score\": 0.7096774193548387, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7970475654376583, \"recall\": 0.818964629952533, \"f1-score\": 0.7993941272556274, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7608278579539389, \"recall\": 0.7413793103448276, \"f1-score\": 0.742997325596801, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 79.93941272556275, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.2997325596801, + "eval_loss": 0.5527262091636658, + "eval_runtime": 3.5821, + "eval_samples_per_second": 32.383, + "step": 592 + }, + { + "epoch": 38.0, + "learning_rate": 0.00027, + "loss": 0.1497, + "step": 608 + }, + { + "epoch": 38.0, + "eval_accuracy": 75.86206896551724, + "eval_average_metrics": 77.03295753874957, + "eval_classification_report": "{\"0\": {\"precision\": 0.8518518518518519, \"recall\": 0.6216216216216216, \"f1-score\": 0.7187499999999999, \"support\": 37.0}, \"1\": {\"precision\": 0.7058823529411765, \"recall\": 0.7741935483870968, \"f1-score\": 0.7384615384615385, \"support\": 31.0}, \"2\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7928252643326172, \"recall\": 0.8324630073622009, \"f1-score\": 0.8060466443278944, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7749773703120559, \"recall\": 0.7586206896551724, \"f1-score\": 0.7580302779117434, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}}", + "eval_f1_macro": 80.60466443278943, + "eval_f1_micro": 75.86206896551724, + "eval_f1_weighted": 75.80302779117434, + "eval_loss": 0.6385549902915955, + "eval_runtime": 3.5319, + "eval_samples_per_second": 32.843, + "step": 608 + }, + { + "epoch": 39.0, + "learning_rate": 0.0002683333333333333, + "loss": 0.1752, + "step": 624 + }, + { + "epoch": 39.0, + "eval_accuracy": 75.86206896551724, + "eval_average_metrics": 77.30788204399227, + "eval_classification_report": "{\"0\": {\"precision\": 0.8518518518518519, \"recall\": 0.6216216216216216, \"f1-score\": 0.7187499999999999, \"support\": 37.0}, \"1\": {\"precision\": 0.6857142857142857, \"recall\": 0.7741935483870968, \"f1-score\": 0.7272727272727272, \"support\": 31.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8134078884078884, \"recall\": 0.8324630073622009, \"f1-score\": 0.8153972542299748, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7801977077839146, \"recall\": 0.7586206896551724, \"f1-score\": 0.7596766482193712, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}}", + "eval_f1_macro": 81.53972542299748, + "eval_f1_micro": 75.86206896551724, + "eval_f1_weighted": 75.96766482193712, + "eval_loss": 0.6816688179969788, + "eval_runtime": 3.512, + "eval_samples_per_second": 33.029, + "step": 624 + }, + { + "epoch": 40.0, + "learning_rate": 0.0002666666666666666, + "loss": 0.1593, + "step": 640 + }, + { + "epoch": 40.0, + "eval_accuracy": 78.44827586206897, + "eval_average_metrics": 79.95936897716001, + "eval_classification_report": "{\"0\": {\"precision\": 0.8333333333333334, \"recall\": 0.6756756756756757, \"f1-score\": 0.746268656716418, \"support\": 37.0}, \"1\": {\"precision\": 0.65, \"recall\": 0.8387096774193549, \"f1-score\": 0.7323943661971831, \"support\": 31.0}, \"2\": {\"precision\": 0.9090909090909091, \"recall\": 0.8333333333333334, \"f1-score\": 0.8695652173913043, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7844827586206896, \"recall\": 0.7844827586206896, \"f1-score\": 0.7844827586206896, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8587752525252526, \"recall\": 0.833395391359101, \"f1-score\": 0.8421697409084262, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.8033829676071055, \"recall\": 0.7844827586206896, \"f1-score\": 0.7872395009365947, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7844827586206896, \"recall\": 0.7844827586206896, \"f1-score\": 0.7844827586206896, \"support\": 116.0}}", + "eval_f1_macro": 84.21697409084263, + "eval_f1_micro": 78.44827586206897, + "eval_f1_weighted": 78.72395009365947, + "eval_loss": 0.6754371523857117, + "eval_runtime": 3.6833, + "eval_samples_per_second": 31.494, + "step": 640 + }, + { + "epoch": 41.0, + "learning_rate": 0.000265, + "loss": 0.1394, + "step": 656 + }, + { + "epoch": 41.0, + "eval_accuracy": 75.86206896551724, + "eval_average_metrics": 77.32595279515027, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6857142857142857, \"recall\": 0.7741935483870968, \"f1-score\": 0.7272727272727272, \"support\": 31.0}, \"2\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8167056509798445, \"recall\": 0.8254247190739126, \"f1-score\": 0.8170916081570274, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7674179824624763, \"recall\": 0.7586206896551724, \"f1-score\": 0.7587051243386388, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7586206896551724, \"recall\": 0.7586206896551724, \"f1-score\": 0.7586206896551724, \"support\": 116.0}}", + "eval_f1_macro": 81.70916081570275, + "eval_f1_micro": 75.86206896551724, + "eval_f1_weighted": 75.87051243386388, + "eval_loss": 0.6537607312202454, + "eval_runtime": 3.3333, + "eval_samples_per_second": 34.8, + "step": 656 + }, + { + "epoch": 42.0, + "learning_rate": 0.0002633333333333333, + "loss": 0.1325, + "step": 672 + }, + { + "epoch": 42.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.103336859165, + "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6756756756756757, \"f1-score\": 0.7042253521126761, \"support\": 37.0}, \"1\": {\"precision\": 0.76, \"recall\": 0.6129032258064516, \"f1-score\": 0.6785714285714285, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7881179050567595, \"recall\": 0.8051695849074881, \"f1-score\": 0.7882470808572597, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7468247571260809, \"recall\": 0.7241379310344828, \"f1-score\": 0.7276105314403748, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.82470808572597, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.76105314403748, + "eval_loss": 0.7230364084243774, + "eval_runtime": 3.5461, + "eval_samples_per_second": 32.712, + "step": 672 + }, + { + "epoch": 43.0, + "learning_rate": 0.00026166666666666667, + "loss": 0.1048, + "step": 688 + }, + { + "epoch": 43.0, + "eval_accuracy": 76.72413793103449, + "eval_average_metrics": 78.1895965261265, + "eval_classification_report": "{\"0\": {\"precision\": 0.7878787878787878, \"recall\": 0.7027027027027027, \"f1-score\": 0.7428571428571429, \"support\": 37.0}, \"1\": {\"precision\": 0.7096774193548387, \"recall\": 0.7096774193548387, \"f1-score\": 0.7096774193548389, \"support\": 31.0}, \"2\": {\"precision\": 0.7142857142857143, \"recall\": 0.8333333333333334, \"f1-score\": 0.7692307692307692, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7672413793103449, \"recall\": 0.7672413793103449, \"f1-score\": 0.7672413793103448, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.821934785644463, \"recall\": 0.8345336263683039, \"f1-score\": 0.82453439192054, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7758247499626809, \"recall\": 0.7672413793103449, \"f1-score\": 0.7685667105038302, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7672413793103449, \"recall\": 0.7672413793103449, \"f1-score\": 0.7672413793103449, \"support\": 116.0}}", + "eval_f1_macro": 82.453439192054, + "eval_f1_micro": 76.72413793103448, + "eval_f1_weighted": 76.85667105038301, + "eval_loss": 0.723783016204834, + "eval_runtime": 3.3621, + "eval_samples_per_second": 34.503, + "step": 688 + }, + { + "epoch": 44.0, + "learning_rate": 0.00026, + "loss": 0.1423, + "step": 704 + }, + { + "epoch": 44.0, + "eval_accuracy": 78.44827586206897, + "eval_average_metrics": 79.76497099258523, + "eval_classification_report": "{\"0\": {\"precision\": 0.8928571428571429, \"recall\": 0.6756756756756757, \"f1-score\": 0.7692307692307693, \"support\": 37.0}, \"1\": {\"precision\": 0.6756756756756757, \"recall\": 0.8064516129032258, \"f1-score\": 0.7352941176470588, \"support\": 31.0}, \"2\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7844827586206896, \"recall\": 0.7844827586206896, \"f1-score\": 0.7844827586206896, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8380537818037818, \"recall\": 0.8432520221834738, \"f1-score\": 0.8347226947459145, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.8061416332968058, \"recall\": 0.7844827586206896, \"f1-score\": 0.7869106277161151, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7844827586206896, \"recall\": 0.7844827586206896, \"f1-score\": 0.7844827586206896, \"support\": 116.0}}", + "eval_f1_macro": 83.47226947459146, + "eval_f1_micro": 78.44827586206897, + "eval_f1_weighted": 78.69106277161151, + "eval_loss": 0.7120476365089417, + "eval_runtime": 4.7823, + "eval_samples_per_second": 24.256, + "step": 704 + }, + { + "epoch": 45.0, + "learning_rate": 0.00025833333333333334, + "loss": 0.1124, + "step": 720 + }, + { + "epoch": 45.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.39437481820235, + "eval_classification_report": "{\"0\": {\"precision\": 0.8125, \"recall\": 0.7027027027027027, \"f1-score\": 0.7536231884057971, \"support\": 37.0}, \"1\": {\"precision\": 0.7692307692307693, \"recall\": 0.6451612903225806, \"f1-score\": 0.7017543859649122, \"support\": 31.0}, \"2\": {\"precision\": 0.5238095238095238, \"recall\": 0.9166666666666666, \"f1-score\": 0.6666666666666667, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7854463245088245, \"recall\": 0.8091079991281603, \"f1-score\": 0.7881109222865348, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7665658694753523, \"recall\": 0.7413793103448276, \"f1-score\": 0.7449054497519043, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 78.81109222865348, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.49054497519043, + "eval_loss": 0.7129976749420166, + "eval_runtime": 4.8837, + "eval_samples_per_second": 23.752, + "step": 720 + }, + { + "epoch": 46.0, + "learning_rate": 0.00025666666666666665, + "loss": 0.1102, + "step": 736 + }, + { + "epoch": 46.0, + "eval_accuracy": 77.58620689655173, + "eval_average_metrics": 78.85200132684653, + "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7837837837837838, \"f1-score\": 0.7631578947368421, \"support\": 37.0}, \"1\": {\"precision\": 0.8, \"recall\": 0.6451612903225806, \"f1-score\": 0.7142857142857142, \"support\": 31.0}, \"2\": {\"precision\": 0.6875, \"recall\": 0.9166666666666666, \"f1-score\": 0.7857142857142857, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7758620689655172, \"recall\": 0.7758620689655172, \"f1-score\": 0.7758620689655173, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.828886217948718, \"recall\": 0.8331320231521844, \"f1-score\": 0.8264189886480908, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7858863837312112, \"recall\": 0.7758620689655172, \"f1-score\": 0.7759369264947359, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7758620689655172, \"recall\": 0.7758620689655172, \"f1-score\": 0.7758620689655172, \"support\": 116.0}}", + "eval_f1_macro": 82.64189886480908, + "eval_f1_micro": 77.58620689655173, + "eval_f1_weighted": 77.5936926494736, + "eval_loss": 0.701239287853241, + "eval_runtime": 3.6347, + "eval_samples_per_second": 31.915, + "step": 736 + }, + { + "epoch": 47.0, + "learning_rate": 0.00025499999999999996, + "loss": 0.105, + "step": 752 + }, + { + "epoch": 47.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.30801334680646, + "eval_classification_report": "{\"0\": {\"precision\": 0.8571428571428571, \"recall\": 0.6486486486486487, \"f1-score\": 0.7384615384615384, \"support\": 37.0}, \"1\": {\"precision\": 0.6896551724137931, \"recall\": 0.6451612903225806, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.6875, \"recall\": 0.9166666666666666, \"f1-score\": 0.7857142857142857, \"support\": 12.0}, \"3\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7657771526844803, \"recall\": 0.8301290201491813, \"f1-score\": 0.7899267399267399, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.755783351606776, \"recall\": 0.7413793103448276, \"f1-score\": 0.7396351732558629, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 78.99267399267399, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 73.9635173255863, + "eval_loss": 0.7169280052185059, + "eval_runtime": 3.5071, + "eval_samples_per_second": 33.076, + "step": 752 + }, + { + "epoch": 48.0, + "learning_rate": 0.00025333333333333333, + "loss": 0.1134, + "step": 768 + }, + { + "epoch": 48.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.65882746801766, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7297297297297297, \"f1-score\": 0.7397260273972601, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7773474837892996, \"recall\": 0.8177507144241015, \"f1-score\": 0.790464588974203, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7432484181260528, \"recall\": 0.7327586206896551, \"f1-score\": 0.7303712683671932, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 79.04645889742031, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.03712683671932, + "eval_loss": 0.6846996545791626, + "eval_runtime": 3.498, + "eval_samples_per_second": 33.162, + "step": 768 + }, + { + "epoch": 49.0, + "learning_rate": 0.00025166666666666664, + "loss": 0.0941, + "step": 784 + }, + { + "epoch": 49.0, + "eval_accuracy": 78.44827586206897, + "eval_average_metrics": 79.78346074582967, + "eval_classification_report": "{\"0\": {\"precision\": 0.8333333333333334, \"recall\": 0.6756756756756757, \"f1-score\": 0.746268656716418, \"support\": 37.0}, \"1\": {\"precision\": 0.6842105263157895, \"recall\": 0.8387096774193549, \"f1-score\": 0.7536231884057972, \"support\": 31.0}, \"2\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7844827586206896, \"recall\": 0.7844827586206896, \"f1-score\": 0.7844827586206896, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8453748006379586, \"recall\": 0.8368676135813232, \"f1-score\": 0.8367315562448894, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7992025518341308, \"recall\": 0.7844827586206896, \"f1-score\": 0.7856413563469179, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7844827586206896, \"recall\": 0.7844827586206896, \"f1-score\": 0.7844827586206896, \"support\": 116.0}}", + "eval_f1_macro": 83.67315562448894, + "eval_f1_micro": 78.44827586206897, + "eval_f1_weighted": 78.5641356346918, + "eval_loss": 0.7080085873603821, + "eval_runtime": 3.6347, + "eval_samples_per_second": 31.915, + "step": 784 + }, + { + "epoch": 50.0, + "learning_rate": 0.00025, + "loss": 0.0909, + "step": 800 + }, + { + "epoch": 50.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.03751381670577, + "eval_classification_report": "{\"0\": {\"precision\": 0.7878787878787878, \"recall\": 0.7027027027027027, \"f1-score\": 0.7428571428571429, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7791038676236044, \"recall\": 0.8143723360457231, \"f1-score\": 0.788917220113852, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7398278611890228, \"recall\": 0.7241379310344828, \"f1-score\": 0.7243074704854133, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.8917220113852, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.43074704854133, + "eval_loss": 0.801819384098053, + "eval_runtime": 3.8217, + "eval_samples_per_second": 30.353, + "step": 800 + }, + { + "epoch": 51.0, + "learning_rate": 0.0002483333333333333, + "loss": 0.0935, + "step": 816 + }, + { + "epoch": 51.0, + "eval_accuracy": 75.0, + "eval_average_metrics": 76.40850770539596, + "eval_classification_report": "{\"0\": {\"precision\": 0.8125, \"recall\": 0.7027027027027027, \"f1-score\": 0.7536231884057971, \"support\": 37.0}, \"1\": {\"precision\": 0.6774193548387096, \"recall\": 0.6774193548387096, \"f1-score\": 0.6774193548387096, \"support\": 31.0}, \"2\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.796426607666527, \"recall\": 0.820084701637121, \"f1-score\": 0.8049408382675544, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7590475257501121, \"recall\": 0.75, \"f1-score\": 0.7513994699482838, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 116.0}}", + "eval_f1_macro": 80.49408382675544, + "eval_f1_micro": 75.0, + "eval_f1_weighted": 75.13994699482838, + "eval_loss": 0.830279529094696, + "eval_runtime": 3.4371, + "eval_samples_per_second": 33.749, + "step": 816 + }, + { + "epoch": 52.0, + "learning_rate": 0.0002466666666666666, + "loss": 0.0702, + "step": 832 + }, + { + "epoch": 52.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 73.81223985197946, + "eval_classification_report": "{\"0\": {\"precision\": 0.8, \"recall\": 0.6486486486486487, \"f1-score\": 0.7164179104477612, \"support\": 37.0}, \"1\": {\"precision\": 0.6785714285714286, \"recall\": 0.6129032258064516, \"f1-score\": 0.6440677966101694, \"support\": 31.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"3\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7621232933732933, \"recall\": 0.8156800954179986, \"f1-score\": 0.7809316779296764, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7370814530297288, \"recall\": 0.7241379310344828, \"f1-score\": 0.7232820540805361, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.09316779296765, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.32820540805362, + "eval_loss": 0.8319224715232849, + "eval_runtime": 3.3666, + "eval_samples_per_second": 34.456, + "step": 832 + }, + { + "epoch": 53.0, + "learning_rate": 0.000245, + "loss": 0.0898, + "step": 848 + }, + { + "epoch": 53.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.78500183855209, + "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.7027027027027027, \"f1-score\": 0.7323943661971832, \"support\": 37.0}, \"1\": {\"precision\": 0.72, \"recall\": 0.5806451612903226, \"f1-score\": 0.6428571428571428, \"support\": 31.0}, \"2\": {\"precision\": 0.5789473684210527, \"recall\": 0.9166666666666666, \"f1-score\": 0.7096774193548387, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8034112018012947, \"recall\": 0.8288212607769059, \"f1-score\": 0.8074298415413417, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7571914943175752, \"recall\": 0.7413793103448276, \"f1-score\": 0.7412116113110867, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 80.74298415413416, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.12116113110866, + "eval_loss": 0.8703691959381104, + "eval_runtime": 3.4984, + "eval_samples_per_second": 33.158, + "step": 848 + }, + { + "epoch": 54.0, + "learning_rate": 0.0002433333333333333, + "loss": 0.079, + "step": 864 + }, + { + "epoch": 54.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.34062686922408, + "eval_classification_report": "{\"0\": {\"precision\": 0.7222222222222222, \"recall\": 0.7027027027027027, \"f1-score\": 0.7123287671232876, \"support\": 37.0}, \"1\": {\"precision\": 0.6129032258064516, \"recall\": 0.6129032258064516, \"f1-score\": 0.6129032258064516, \"support\": 31.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7724778022157054, \"recall\": 0.7738257410636442, \"f1-score\": 0.7718427246064135, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7107715081853013, \"recall\": 0.7068965517241379, \"f1-score\": 0.7079892467142738, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.18427246064135, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.79892467142737, + "eval_loss": 0.8563198447227478, + "eval_runtime": 3.4915, + "eval_samples_per_second": 33.224, + "step": 864 + }, + { + "epoch": 55.0, + "learning_rate": 0.00024166666666666664, + "loss": 0.073, + "step": 880 + }, + { + "epoch": 55.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.6983847953517, + "eval_classification_report": "{\"0\": {\"precision\": 0.8275862068965517, \"recall\": 0.6486486486486487, \"f1-score\": 0.7272727272727273, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.7096774193548387, \"f1-score\": 0.6875, \"support\": 31.0}, \"2\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7986072835210766, \"recall\": 0.8173602029448803, \"f1-score\": 0.8011078688468394, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.760925657774647, \"recall\": 0.7413793103448276, \"f1-score\": 0.7440689022775737, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 80.11078688468393, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.40689022775737, + "eval_loss": 0.8849710822105408, + "eval_runtime": 3.504, + "eval_samples_per_second": 33.105, + "step": 880 + }, + { + "epoch": 56.0, + "learning_rate": 0.00023999999999999998, + "loss": 0.0599, + "step": 896 + }, + { + "epoch": 56.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.09792476065121, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.7037037037037037, \"recall\": 0.6129032258064516, \"f1-score\": 0.6551724137931035, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7831063118657996, \"recall\": 0.8156800954179986, \"f1-score\": 0.7898948921261294, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7440281135604372, \"recall\": 0.7241379310344828, \"f1-score\": 0.7257462362309532, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.98948921261294, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.57462362309532, + "eval_loss": 0.8868003487586975, + "eval_runtime": 3.4619, + "eval_samples_per_second": 33.507, + "step": 896 + }, + { + "epoch": 57.0, + "learning_rate": 0.0002383333333333333, + "loss": 0.0722, + "step": 912 + }, + { + "epoch": 57.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.42814629539244, + "eval_classification_report": "{\"0\": {\"precision\": 0.7857142857142857, \"recall\": 0.5945945945945946, \"f1-score\": 0.676923076923077, \"support\": 37.0}, \"1\": {\"precision\": 0.6923076923076923, \"recall\": 0.5806451612903226, \"f1-score\": 0.631578947368421, \"support\": 31.0}, \"2\": {\"precision\": 0.5555555555555556, \"recall\": 0.8333333333333334, \"f1-score\": 0.6666666666666667, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.5714285714285714, \"recall\": 0.8888888888888888, \"f1-score\": 0.6956521739130435, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7457646520146521, \"recall\": 0.8048910805967258, \"f1-score\": 0.7627741767363521, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.722540629868216, \"recall\": 0.6982758620689655, \"f1-score\": 0.6977999509414142, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.2774176736352, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.77999509414143, + "eval_loss": 0.8865318894386292, + "eval_runtime": 3.548, + "eval_samples_per_second": 32.694, + "step": 912 + }, + { + "epoch": 58.0, + "learning_rate": 0.00023666666666666663, + "loss": 0.0629, + "step": 928 + }, + { + "epoch": 58.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.208285651665, + "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.7027027027027027, \"f1-score\": 0.7323943661971832, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.5806451612903226, \"f1-score\": 0.6206896551724138, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7607230392156863, \"recall\": 0.7802101496657948, \"f1-score\": 0.7654104350579475, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7203769438810007, \"recall\": 0.7068965517241379, \"f1-score\": 0.7091278875603767, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 76.54104350579475, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.91278875603767, + "eval_loss": 0.9302300214767456, + "eval_runtime": 3.5546, + "eval_samples_per_second": 32.634, + "step": 928 + }, + { + "epoch": 59.0, + "learning_rate": 0.00023499999999999997, + "loss": 0.0594, + "step": 944 + }, + { + "epoch": 59.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.72865124367408, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6875, \"recall\": 0.7096774193548387, \"f1-score\": 0.6984126984126984, \"support\": 31.0}, \"2\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8013014371381307, \"recall\": 0.8173602029448803, \"f1-score\": 0.8028430311518546, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7564320933515871, \"recall\": 0.7413793103448276, \"f1-score\": 0.7435443979054527, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 80.28430311518547, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.35443979054527, + "eval_loss": 0.9722999930381775, + "eval_runtime": 3.5534, + "eval_samples_per_second": 32.645, + "step": 944 + }, + { + "epoch": 60.0, + "learning_rate": 0.0002333333333333333, + "loss": 0.0635, + "step": 960 + }, + { + "epoch": 60.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.68670802149634, + "eval_classification_report": "{\"0\": {\"precision\": 0.7714285714285715, \"recall\": 0.7297297297297297, \"f1-score\": 0.75, \"support\": 37.0}, \"1\": {\"precision\": 0.7037037037037037, \"recall\": 0.6129032258064516, \"f1-score\": 0.6551724137931035, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.798217291967292, \"recall\": 0.8153985638864671, \"f1-score\": 0.8016269438810006, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7530441939924699, \"recall\": 0.7413793103448276, \"f1-score\": 0.7430827562891982, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 80.16269438810006, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.30827562891982, + "eval_loss": 0.8893618583679199, + "eval_runtime": 3.6485, + "eval_samples_per_second": 31.794, + "step": 960 + }, + { + "epoch": 61.0, + "learning_rate": 0.00023166666666666667, + "loss": 0.0746, + "step": 976 + }, + { + "epoch": 61.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.99323867478026, + "eval_classification_report": "{\"0\": {\"precision\": 0.8064516129032258, \"recall\": 0.6756756756756757, \"f1-score\": 0.7352941176470588, \"support\": 37.0}, \"1\": {\"precision\": 0.6896551724137931, \"recall\": 0.6451612903225806, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7949678936191727, \"recall\": 0.8126740651942265, \"f1-score\": 0.7970588235294118, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7542305801290882, \"recall\": 0.7327586206896551, \"f1-score\": 0.7371534820824881, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 79.70588235294119, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.71534820824881, + "eval_loss": 0.9275913834571838, + "eval_runtime": 3.6137, + "eval_samples_per_second": 32.1, + "step": 976 + }, + { + "epoch": 62.0, + "learning_rate": 0.00023, + "loss": 0.0532, + "step": 992 + }, + { + "epoch": 62.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.60122963120249, + "eval_classification_report": "{\"0\": {\"precision\": 0.6944444444444444, \"recall\": 0.6756756756756757, \"f1-score\": 0.684931506849315, \"support\": 37.0}, \"1\": {\"precision\": 0.7619047619047619, \"recall\": 0.5161290322580645, \"f1-score\": 0.6153846153846153, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.5714285714285714, \"recall\": 0.8888888888888888, \"f1-score\": 0.6956521739130435, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5384615384615384, \"recall\": 0.7777777777777778, \"f1-score\": 0.6363636363636364, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7660924145299145, \"recall\": 0.796545032936162, \"f1-score\": 0.7687123599111653, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7245905435560608, \"recall\": 0.6982758620689655, \"f1-score\": 0.698785101199003, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.87123599111652, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.8785101199003, + "eval_loss": 0.9500743746757507, + "eval_runtime": 3.4498, + "eval_samples_per_second": 33.625, + "step": 992 + }, + { + "epoch": 63.0, + "learning_rate": 0.0002283333333333333, + "loss": 0.0531, + "step": 1008 + }, + { + "epoch": 63.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.35885948145773, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6923076923076923, \"recall\": 0.5806451612903226, \"f1-score\": 0.631578947368421, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7615518162393162, \"recall\": 0.8012311706868158, \"f1-score\": 0.773281235037528, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7219827586206896, \"recall\": 0.7068965517241379, \"f1-score\": 0.7072800407725051, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.3281235037528, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.7280040772505, + "eval_loss": 0.9903110265731812, + "eval_runtime": 3.499, + "eval_samples_per_second": 33.152, + "step": 1008 + }, + { + "epoch": 64.0, + "learning_rate": 0.00022666666666666663, + "loss": 0.05, + "step": 1024 + }, + { + "epoch": 64.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.22033105895471, + "eval_classification_report": "{\"0\": {\"precision\": 0.8, \"recall\": 0.6486486486486487, \"f1-score\": 0.7164179104477612, \"support\": 37.0}, \"1\": {\"precision\": 0.7307692307692307, \"recall\": 0.6129032258064516, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7746794871794872, \"recall\": 0.8017912065291097, \"f1-score\": 0.7769909642961662, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7478779840848806, \"recall\": 0.7155172413793104, \"f1-score\": 0.7207877953034019, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.69909642961662, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 72.07877953034019, + "eval_loss": 0.9905300736427307, + "eval_runtime": 3.5431, + "eval_samples_per_second": 32.739, + "step": 1024 + }, + { + "epoch": 65.0, + "learning_rate": 0.000225, + "loss": 0.0541, + "step": 1040 + }, + { + "epoch": 65.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.75852224178797, + "eval_classification_report": "{\"0\": {\"precision\": 0.8064516129032258, \"recall\": 0.6756756756756757, \"f1-score\": 0.7352941176470588, \"support\": 37.0}, \"1\": {\"precision\": 0.65625, \"recall\": 0.6774193548387096, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8010736323488339, \"recall\": 0.8167063232587426, \"f1-score\": 0.8038353803059686, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7553794665429121, \"recall\": 0.7413793103448276, \"f1-score\": 0.7437468886758948, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 80.38353803059685, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.37468886758948, + "eval_loss": 0.9730199575424194, + "eval_runtime": 3.4919, + "eval_samples_per_second": 33.22, + "step": 1040 + }, + { + "epoch": 66.0, + "learning_rate": 0.00022333333333333333, + "loss": 0.0311, + "step": 1056 + }, + { + "epoch": 66.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.83419425678362, + "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.7027027027027027, \"f1-score\": 0.7323943661971832, \"support\": 37.0}, \"1\": {\"precision\": 0.76, \"recall\": 0.6129032258064516, \"f1-score\": 0.6785714285714285, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7880147058823529, \"recall\": 0.8120201855080887, \"f1-score\": 0.7918420853042529, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7539401622718053, \"recall\": 0.7327586206896551, \"f1-score\": 0.7360084435877817, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 79.1842085304253, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.60084435877818, + "eval_loss": 0.9895803928375244, + "eval_runtime": 3.4248, + "eval_samples_per_second": 33.871, + "step": 1056 + }, + { + "epoch": 67.0, + "learning_rate": 0.00022166666666666667, + "loss": 0.0452, + "step": 1072 + }, + { + "epoch": 67.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.92324674618163, + "eval_classification_report": "{\"0\": {\"precision\": 0.7428571428571429, \"recall\": 0.7027027027027027, \"f1-score\": 0.7222222222222223, \"support\": 37.0}, \"1\": {\"precision\": 0.7037037037037037, \"recall\": 0.6129032258064516, \"f1-score\": 0.6551724137931035, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7936988936988937, \"recall\": 0.8120201855080887, \"f1-score\": 0.7975594835635405, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7433431192051883, \"recall\": 0.7327586206896551, \"f1-score\": 0.7338531449044144, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 79.75594835635404, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.38531449044144, + "eval_loss": 0.9546139240264893, + "eval_runtime": 3.5536, + "eval_samples_per_second": 32.643, + "step": 1072 + }, + { + "epoch": 68.0, + "learning_rate": 0.00021999999999999995, + "loss": 0.0499, + "step": 1088 + }, + { + "epoch": 68.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.2043083503321, + "eval_classification_report": "{\"0\": {\"precision\": 0.8214285714285714, \"recall\": 0.6216216216216216, \"f1-score\": 0.7076923076923075, \"support\": 37.0}, \"1\": {\"precision\": 0.6774193548387096, \"recall\": 0.6774193548387096, \"f1-score\": 0.6774193548387096, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7743657947049788, \"recall\": 0.796060677613097, \"f1-score\": 0.7767055568697916, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7434982613735149, \"recall\": 0.7155172413793104, \"f1-score\": 0.7204322943848718, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.67055568697916, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 72.04322943848717, + "eval_loss": 0.9860843420028687, + "eval_runtime": 3.9273, + "eval_samples_per_second": 29.537, + "step": 1088 + }, + { + "epoch": 69.0, + "learning_rate": 0.0002183333333333333, + "loss": 0.0449, + "step": 1104 + }, + { + "epoch": 69.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.68379435107377, + "eval_classification_report": "{\"0\": {\"precision\": 0.7575757575757576, \"recall\": 0.6756756756756757, \"f1-score\": 0.7142857142857142, \"support\": 37.0}, \"1\": {\"precision\": 0.6875, \"recall\": 0.7096774193548387, \"f1-score\": 0.6984126984126984, \"support\": 31.0}, \"2\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8018465909090909, \"recall\": 0.8068496924343698, \"f1-score\": 0.8004843604108309, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7527592737722048, \"recall\": 0.7413793103448276, \"f1-score\": 0.7441087929424642, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 80.0484360410831, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.41087929424643, + "eval_loss": 1.0002285242080688, + "eval_runtime": 3.4787, + "eval_samples_per_second": 33.346, + "step": 1104 + }, + { + "epoch": 70.0, + "learning_rate": 0.00021666666666666666, + "loss": 0.028, + "step": 1120 + }, + { + "epoch": 70.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.32231498821493, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.7272727272727273, \"recall\": 0.5161290322580645, \"f1-score\": 0.6037735849056604, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.740808284457478, \"recall\": 0.8035833212244503, \"f1-score\": 0.76004157869702, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7210397916877338, \"recall\": 0.6982758620689655, \"f1-score\": 0.6962992966936457, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.004157869702, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.62992966936457, + "eval_loss": 1.0271365642547607, + "eval_runtime": 3.5998, + "eval_samples_per_second": 32.224, + "step": 1120 + }, + { + "epoch": 71.0, + "learning_rate": 0.000215, + "loss": 0.0395, + "step": 1136 + }, + { + "epoch": 71.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.3717447305537, + "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6756756756756757, \"f1-score\": 0.7042253521126761, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7628492647058824, \"recall\": 0.8005772910006781, \"f1-score\": 0.7748716564090425, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7179817444219067, \"recall\": 0.7068965517241379, \"f1-score\": 0.70620502936483, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.48716564090425, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.62050293648299, + "eval_loss": 1.0372263193130493, + "eval_runtime": 3.3706, + "eval_samples_per_second": 34.415, + "step": 1136 + }, + { + "epoch": 72.0, + "learning_rate": 0.00021333333333333333, + "loss": 0.0333, + "step": 1152 + }, + { + "epoch": 72.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.70067238701832, + "eval_classification_report": "{\"0\": {\"precision\": 0.7857142857142857, \"recall\": 0.5945945945945946, \"f1-score\": 0.676923076923077, \"support\": 37.0}, \"1\": {\"precision\": 0.7037037037037037, \"recall\": 0.6129032258064516, \"f1-score\": 0.6551724137931035, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.5714285714285714, \"recall\": 0.8888888888888888, \"f1-score\": 0.6956521739130435, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7647330130882762, \"recall\": 0.7985066719945753, \"f1-score\": 0.7686961620634727, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7324423366846233, \"recall\": 0.6982758620689655, \"f1-score\": 0.7027790092793286, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.86961620634727, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 70.27790092793286, + "eval_loss": 1.207260012626648, + "eval_runtime": 3.4976, + "eval_samples_per_second": 33.166, + "step": 1152 + }, + { + "epoch": 73.0, + "learning_rate": 0.00021166666666666667, + "loss": 0.0389, + "step": 1168 + }, + { + "epoch": 73.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.13097157022581, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.6451612903225806, \"f1-score\": 0.6557377049180327, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7836489898989899, \"recall\": 0.8092956868158481, \"f1-score\": 0.7925348459649957, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.731805120167189, \"recall\": 0.7241379310344828, \"f1-score\": 0.7244281547750715, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 79.25348459649956, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.44281547750715, + "eval_loss": 1.0657200813293457, + "eval_runtime": 3.5076, + "eval_samples_per_second": 33.071, + "step": 1168 + }, + { + "epoch": 74.0, + "learning_rate": 0.00020999999999999998, + "loss": 0.0306, + "step": 1184 + }, + { + "epoch": 74.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.59589189685093, + "eval_classification_report": "{\"0\": {\"precision\": 0.7666666666666667, \"recall\": 0.6216216216216216, \"f1-score\": 0.6865671641791045, \"support\": 37.0}, \"1\": {\"precision\": 0.72, \"recall\": 0.5806451612903226, \"f1-score\": 0.6428571428571428, \"support\": 31.0}, \"2\": {\"precision\": 0.45454545454545453, \"recall\": 0.8333333333333334, \"f1-score\": 0.5882352941176471, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6, \"recall\": 0.6666666666666666, \"f1-score\": 0.631578947368421, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7426830808080809, \"recall\": 0.7804916811973264, \"f1-score\": 0.7516409296764005, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7178317659352141, \"recall\": 0.6896551724137931, \"f1-score\": 0.6928844013700504, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.16409296764004, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 69.28844013700504, + "eval_loss": 1.1332286596298218, + "eval_runtime": 3.5829, + "eval_samples_per_second": 32.376, + "step": 1184 + }, + { + "epoch": 75.0, + "learning_rate": 0.00020833333333333332, + "loss": 0.069, + "step": 1200 + }, + { + "epoch": 75.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.5498024677819, + "eval_classification_report": "{\"0\": {\"precision\": 0.7586206896551724, \"recall\": 0.5945945945945946, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.5714285714285714, \"recall\": 0.8888888888888888, \"f1-score\": 0.6956521739130435, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7318250678918782, \"recall\": 0.8043310447544318, \"f1-score\": 0.756501233563254, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7051940208688128, \"recall\": 0.6896551724137931, \"f1-score\": 0.6861805203204356, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.65012335632541, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 68.61805203204356, + "eval_loss": 1.077471137046814, + "eval_runtime": 3.593, + "eval_samples_per_second": 32.285, + "step": 1200 + }, + { + "epoch": 76.0, + "learning_rate": 0.00020666666666666666, + "loss": 0.0264, + "step": 1216 + }, + { + "epoch": 76.0, + "eval_accuracy": 67.24137931034483, + "eval_average_metrics": 68.70825536495758, + "eval_classification_report": "{\"0\": {\"precision\": 0.7419354838709677, \"recall\": 0.6216216216216216, \"f1-score\": 0.676470588235294, \"support\": 37.0}, \"1\": {\"precision\": 0.6296296296296297, \"recall\": 0.5483870967741935, \"f1-score\": 0.5862068965517241, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 0.6363636363636364, \"recall\": 0.875, \"f1-score\": 0.7368421052631579, \"support\": 8.0}, \"4\": {\"precision\": 0.6, \"recall\": 0.6666666666666666, \"f1-score\": 0.631578947368421, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6724137931034483, \"recall\": 0.6724137931034483, \"f1-score\": 0.6724137931034483, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7119601593895948, \"recall\": 0.7660427564661435, \"f1-score\": 0.7328555711455786, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6805027003441909, \"recall\": 0.6724137931034483, \"f1-score\": 0.6706470572458285, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6724137931034483, \"recall\": 0.6724137931034483, \"f1-score\": 0.6724137931034483, \"support\": 116.0}}", + "eval_f1_macro": 73.28555711455786, + "eval_f1_micro": 67.24137931034483, + "eval_f1_weighted": 67.06470572458285, + "eval_loss": 1.0763792991638184, + "eval_runtime": 3.3897, + "eval_samples_per_second": 34.222, + "step": 1216 + }, + { + "epoch": 77.0, + "learning_rate": 0.000205, + "loss": 0.0281, + "step": 1232 + }, + { + "epoch": 77.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.3835430257844, + "eval_classification_report": "{\"0\": {\"precision\": 0.7567567567567568, \"recall\": 0.7567567567567568, \"f1-score\": 0.7567567567567567, \"support\": 37.0}, \"1\": {\"precision\": 0.8, \"recall\": 0.5161290322580645, \"f1-score\": 0.6274509803921569, \"support\": 31.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.8333333333333334, \"f1-score\": 0.7142857142857143, \"support\": 12.0}, \"3\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7664695945945946, \"recall\": 0.8170968347379638, \"f1-score\": 0.7807523910465086, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7512931034482758, \"recall\": 0.7327586206896551, \"f1-score\": 0.7290720886055572, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 78.07523910465086, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 72.90720886055571, + "eval_loss": 1.0831226110458374, + "eval_runtime": 3.6522, + "eval_samples_per_second": 31.762, + "step": 1232 + }, + { + "epoch": 78.0, + "learning_rate": 0.00020333333333333333, + "loss": 0.0285, + "step": 1248 + }, + { + "epoch": 78.0, + "eval_accuracy": 68.10344827586206, + "eval_average_metrics": 69.83959546586414, + "eval_classification_report": "{\"0\": {\"precision\": 0.7333333333333333, \"recall\": 0.5945945945945946, \"f1-score\": 0.6567164179104478, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.5714285714285714, \"recall\": 0.8888888888888888, \"f1-score\": 0.6956521739130435, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6810344827586207, \"recall\": 0.6810344827586207, \"f1-score\": 0.6810344827586207, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7344105975723623, \"recall\": 0.790442155865543, \"f1-score\": 0.7514467066447963, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6998392575420973, \"recall\": 0.6810344827586207, \"f1-score\": 0.6800681464725282, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6810344827586207, \"recall\": 0.6810344827586207, \"f1-score\": 0.6810344827586207, \"support\": 116.0}}", + "eval_f1_macro": 75.14467066447963, + "eval_f1_micro": 68.10344827586206, + "eval_f1_weighted": 68.00681464725282, + "eval_loss": 1.1497517824172974, + "eval_runtime": 3.471, + "eval_samples_per_second": 33.42, + "step": 1248 + }, + { + "epoch": 79.0, + "learning_rate": 0.00020166666666666667, + "loss": 0.019, + "step": 1264 + }, + { + "epoch": 79.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.48000433823945, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.7037037037037037, \"recall\": 0.6129032258064516, \"f1-score\": 0.6551724137931035, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7725106456724103, \"recall\": 0.791374539862443, \"f1-score\": 0.7753441031585048, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7246044795486987, \"recall\": 0.7068965517241379, \"f1-score\": 0.7100629669227977, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.53441031585048, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 71.00629669227978, + "eval_loss": 1.1421757936477661, + "eval_runtime": 3.4671, + "eval_samples_per_second": 33.457, + "step": 1264 + }, + { + "epoch": 80.0, + "learning_rate": 0.00019999999999999998, + "loss": 0.0222, + "step": 1280 + }, + { + "epoch": 80.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.92542412359352, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6875, \"recall\": 0.7096774193548387, \"f1-score\": 0.6984126984126984, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7967329545454545, \"recall\": 0.8034713140559915, \"f1-score\": 0.7965104310221418, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7438773510971788, \"recall\": 0.7327586206896551, \"f1-score\": 0.7349892925422885, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 79.65104310221417, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.49892925422886, + "eval_loss": 1.1487023830413818, + "eval_runtime": 3.5899, + "eval_samples_per_second": 32.313, + "step": 1280 + }, + { + "epoch": 81.0, + "learning_rate": 0.00019833333333333332, + "loss": 0.0135, + "step": 1296 + }, + { + "epoch": 81.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.29794814454112, + "eval_classification_report": "{\"0\": {\"precision\": 0.7666666666666667, \"recall\": 0.6216216216216216, \"f1-score\": 0.6865671641791045, \"support\": 37.0}, \"1\": {\"precision\": 0.6896551724137931, \"recall\": 0.6451612903225806, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.777192473474801, \"recall\": 0.8059173084374697, \"f1-score\": 0.7830675214454845, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7352106771547915, \"recall\": 0.7155172413793104, \"f1-score\": 0.7178159215775395, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 78.30675214454845, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.78159215775395, + "eval_loss": 1.1739909648895264, + "eval_runtime": 3.5517, + "eval_samples_per_second": 32.661, + "step": 1296 + }, + { + "epoch": 82.0, + "learning_rate": 0.00019666666666666666, + "loss": 0.0254, + "step": 1312 + }, + { + "epoch": 82.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.9414571863228, + "eval_classification_report": "{\"0\": {\"precision\": 0.7575757575757576, \"recall\": 0.6756756756756757, \"f1-score\": 0.7142857142857142, \"support\": 37.0}, \"1\": {\"precision\": 0.6285714285714286, \"recall\": 0.7096774193548387, \"f1-score\": 0.6666666666666666, \"support\": 31.0}, \"2\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8048971861471861, \"recall\": 0.7929608035454809, \"f1-score\": 0.796516106442577, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7434766383042245, \"recall\": 0.7327586206896551, \"f1-score\": 0.7356249396310247, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 79.6516106442577, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.56249396310247, + "eval_loss": 1.2164373397827148, + "eval_runtime": 3.5803, + "eval_samples_per_second": 32.399, + "step": 1312 + }, + { + "epoch": 83.0, + "learning_rate": 0.000195, + "loss": 0.024, + "step": 1328 + }, + { + "epoch": 83.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.16201375707521, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.7142857142857143, \"recall\": 0.6451612903225806, \"f1-score\": 0.6779661016949152, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7700876856118792, \"recall\": 0.7954067979269592, \"f1-score\": 0.7761974310985172, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7356725726998252, \"recall\": 0.7155172413793104, \"f1-score\": 0.7192486364258706, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.61974310985173, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.92486364258706, + "eval_loss": 1.1888818740844727, + "eval_runtime": 3.7406, + "eval_samples_per_second": 31.011, + "step": 1328 + }, + { + "epoch": 84.0, + "learning_rate": 0.00019333333333333333, + "loss": 0.0128, + "step": 1344 + }, + { + "epoch": 84.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 72.86435086704483, + "eval_classification_report": "{\"0\": {\"precision\": 0.7105263157894737, \"recall\": 0.7297297297297297, \"f1-score\": 0.7200000000000001, \"support\": 37.0}, \"1\": {\"precision\": 0.75, \"recall\": 0.5806451612903226, \"f1-score\": 0.6545454545454547, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7612431884635831, \"recall\": 0.7835885280441732, \"f1-score\": 0.7684947691197691, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7242822966507177, \"recall\": 0.7155172413793104, \"f1-score\": 0.7150447828034036, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 76.84947691197691, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.50447828034035, + "eval_loss": 1.1786081790924072, + "eval_runtime": 3.6214, + "eval_samples_per_second": 32.032, + "step": 1344 + }, + { + "epoch": 85.0, + "learning_rate": 0.00019166666666666665, + "loss": 0.0117, + "step": 1360 + }, + { + "epoch": 85.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.54313499150798, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7570773524720893, \"recall\": 0.7937266904000775, \"f1-score\": 0.7664875664341982, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.716900745201562, \"recall\": 0.6982758620689655, \"f1-score\": 0.6986861090881898, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.64875664341983, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.86861090881898, + "eval_loss": 1.1984682083129883, + "eval_runtime": 3.4717, + "eval_samples_per_second": 33.413, + "step": 1360 + }, + { + "epoch": 86.0, + "learning_rate": 0.00018999999999999998, + "loss": 0.0199, + "step": 1376 + }, + { + "epoch": 86.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.1124505248808, + "eval_classification_report": "{\"0\": {\"precision\": 0.8148148148148148, \"recall\": 0.5945945945945946, \"f1-score\": 0.6875, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.7096774193548387, \"f1-score\": 0.6875, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7869662166537166, \"recall\": 0.8106034461881235, \"f1-score\": 0.7899549592564299, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.74853921621163, \"recall\": 0.7241379310344828, \"f1-score\": 0.7262671996698367, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.99549592564298, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.62671996698367, + "eval_loss": 1.2348713874816895, + "eval_runtime": 3.6624, + "eval_samples_per_second": 31.673, + "step": 1376 + }, + { + "epoch": 87.0, + "learning_rate": 0.00018833333333333332, + "loss": 0.0273, + "step": 1392 + }, + { + "epoch": 87.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.60705211108169, + "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6756756756756757, \"f1-score\": 0.7042253521126761, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.5161290322580645, \"f1-score\": 0.5818181818181819, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7423221182412358, \"recall\": 0.782656144047273, \"f1-score\": 0.7562415528524684, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7010956420185629, \"recall\": 0.6896551724137931, \"f1-score\": 0.6887301867632126, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.62415528524684, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 68.87301867632127, + "eval_loss": 1.2356820106506348, + "eval_runtime": 3.7056, + "eval_samples_per_second": 31.304, + "step": 1392 + }, + { + "epoch": 88.0, + "learning_rate": 0.00018666666666666666, + "loss": 0.0195, + "step": 1408 + }, + { + "epoch": 88.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.52613592522435, + "eval_classification_report": "{\"0\": {\"precision\": 0.8, \"recall\": 0.6486486486486487, \"f1-score\": 0.7164179104477612, \"support\": 37.0}, \"1\": {\"precision\": 0.6538461538461539, \"recall\": 0.5483870967741935, \"f1-score\": 0.5964912280701755, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7333655379708011, \"recall\": 0.7833100237334107, \"f1-score\": 0.7507465750577318, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7088811118302951, \"recall\": 0.6896551724137931, \"f1-score\": 0.6909885171236563, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.07465750577317, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 69.09885171236563, + "eval_loss": 1.2878543138504028, + "eval_runtime": 3.5776, + "eval_samples_per_second": 32.424, + "step": 1408 + }, + { + "epoch": 89.0, + "learning_rate": 0.000185, + "loss": 0.0175, + "step": 1424 + }, + { + "epoch": 89.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.08579605796285, + "eval_classification_report": "{\"0\": {\"precision\": 0.8571428571428571, \"recall\": 0.6486486486486487, \"f1-score\": 0.7384615384615384, \"support\": 37.0}, \"1\": {\"precision\": 0.6774193548387096, \"recall\": 0.6774193548387096, \"f1-score\": 0.6774193548387096, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7851217119043944, \"recall\": 0.7994390559914752, \"f1-score\": 0.7838794823140174, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7573538077167841, \"recall\": 0.7241379310344828, \"f1-score\": 0.731276497935531, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.38794823140174, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 73.12764979355309, + "eval_loss": 1.2815598249435425, + "eval_runtime": 3.4005, + "eval_samples_per_second": 34.112, + "step": 1424 + }, + { + "epoch": 90.0, + "learning_rate": 0.00018333333333333334, + "loss": 0.0133, + "step": 1440 + }, + { + "epoch": 90.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.2824070671762, + "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6756756756756757, \"f1-score\": 0.7042253521126761, \"support\": 37.0}, \"1\": {\"precision\": 0.6206896551724138, \"recall\": 0.5806451612903226, \"f1-score\": 0.6000000000000001, \"support\": 31.0}, \"2\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7574568876863501, \"recall\": 0.7907206601763053, \"f1-score\": 0.7722715900667161, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7067433336056124, \"recall\": 0.7068965517241379, \"f1-score\": 0.705231589172056, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.22715900667161, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.52315891720559, + "eval_loss": 1.2245522737503052, + "eval_runtime": 3.7202, + "eval_samples_per_second": 31.181, + "step": 1440 + }, + { + "epoch": 91.0, + "learning_rate": 0.00018166666666666665, + "loss": 0.0206, + "step": 1456 + }, + { + "epoch": 91.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.08994158503671, + "eval_classification_report": "{\"0\": {\"precision\": 0.7575757575757576, \"recall\": 0.6756756756756757, \"f1-score\": 0.7142857142857142, \"support\": 37.0}, \"1\": {\"precision\": 0.7037037037037037, \"recall\": 0.6129032258064516, \"f1-score\": 0.6551724137931035, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.766545664983165, \"recall\": 0.7947529182408215, \"f1-score\": 0.7751505199781061, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7290723325206083, \"recall\": 0.7155172413793104, \"f1-score\": 0.7174126606647416, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.51505199781062, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.74126606647417, + "eval_loss": 1.2820501327514648, + "eval_runtime": 3.2974, + "eval_samples_per_second": 35.179, + "step": 1456 + }, + { + "epoch": 92.0, + "learning_rate": 0.00017999999999999998, + "loss": 0.0056, + "step": 1472 + }, + { + "epoch": 92.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.58476727683382, + "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6756756756756757, \"f1-score\": 0.7042253521126761, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7611917354661163, \"recall\": 0.7866884021117893, \"f1-score\": 0.766097915717108, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7189519501085372, \"recall\": 0.6982758620689655, \"f1-score\": 0.7007410512183132, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.6097915717108, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 70.07410512183132, + "eval_loss": 1.2770755290985107, + "eval_runtime": 3.6406, + "eval_samples_per_second": 31.863, + "step": 1472 + }, + { + "epoch": 93.0, + "learning_rate": 0.00017833333333333332, + "loss": 0.0187, + "step": 1488 + }, + { + "epoch": 93.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.33943650433555, + "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.6756756756756757, \"f1-score\": 0.6944444444444444, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7440773809523811, \"recall\": 0.7866884021117893, \"f1-score\": 0.7611085004177109, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7022290640394089, \"recall\": 0.6982758620689655, \"f1-score\": 0.6959172356177801, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.1108500417711, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.59172356177801, + "eval_loss": 1.301114797592163, + "eval_runtime": 3.7689, + "eval_samples_per_second": 30.778, + "step": 1488 + }, + { + "epoch": 94.0, + "learning_rate": 0.00017666666666666666, + "loss": 0.012, + "step": 1504 + }, + { + "epoch": 94.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.32003789771781, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.7307692307692307, \"recall\": 0.6129032258064516, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7611693861693862, \"recall\": 0.791374539862443, \"f1-score\": 0.7689009661835748, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7274234386303352, \"recall\": 0.7068965517241379, \"f1-score\": 0.7101074462768616, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 76.89009661835749, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 71.01074462768617, + "eval_loss": 1.2950501441955566, + "eval_runtime": 3.5701, + "eval_samples_per_second": 32.492, + "step": 1504 + }, + { + "epoch": 95.0, + "learning_rate": 0.000175, + "loss": 0.0105, + "step": 1520 + }, + { + "epoch": 95.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.36039856880697, + "eval_classification_report": "{\"0\": {\"precision\": 0.7666666666666667, \"recall\": 0.6216216216216216, \"f1-score\": 0.6865671641791045, \"support\": 37.0}, \"1\": {\"precision\": 0.75, \"recall\": 0.5806451612903226, \"f1-score\": 0.6545454545454547, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7434027777777779, \"recall\": 0.7943805700862152, \"f1-score\": 0.7579168551183476, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7251436781609196, \"recall\": 0.6982758620689655, \"f1-score\": 0.6999473634959997, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 75.79168551183476, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.99473634959998, + "eval_loss": 1.31137216091156, + "eval_runtime": 3.4326, + "eval_samples_per_second": 33.794, + "step": 1520 + }, + { + "epoch": 96.0, + "learning_rate": 0.0001733333333333333, + "loss": 0.0161, + "step": 1536 + }, + { + "epoch": 96.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.18340163746485, + "eval_classification_report": "{\"0\": {\"precision\": 0.78125, \"recall\": 0.6756756756756757, \"f1-score\": 0.7246376811594203, \"support\": 37.0}, \"1\": {\"precision\": 0.6296296296296297, \"recall\": 0.5483870967741935, \"f1-score\": 0.5862068965517241, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7475720749158249, \"recall\": 0.8005772910006781, \"f1-score\": 0.768979288367021, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7118470988621851, \"recall\": 0.7068965517241379, \"f1-score\": 0.7045636736832974, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 76.8979288367021, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.45636736832974, + "eval_loss": 1.303325891494751, + "eval_runtime": 3.5751, + "eval_samples_per_second": 32.447, + "step": 1536 + }, + { + "epoch": 97.0, + "learning_rate": 0.00017166666666666665, + "loss": 0.0179, + "step": 1552 + }, + { + "epoch": 97.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.34386330181242, + "eval_classification_report": "{\"0\": {\"precision\": 0.6585365853658537, \"recall\": 0.7297297297297297, \"f1-score\": 0.6923076923076923, \"support\": 37.0}, \"1\": {\"precision\": 0.75, \"recall\": 0.4838709677419355, \"f1-score\": 0.5882352941176471, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7416920731707317, \"recall\": 0.7714917538506247, \"f1-score\": 0.7497060311979042, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7005677039529016, \"recall\": 0.6896551724137931, \"f1-score\": 0.6847381560470063, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 74.97060311979043, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 68.47381560470063, + "eval_loss": 1.4020055532455444, + "eval_runtime": 3.6229, + "eval_samples_per_second": 32.019, + "step": 1552 + }, + { + "epoch": 98.0, + "learning_rate": 0.00016999999999999999, + "loss": 0.0164, + "step": 1568 + }, + { + "epoch": 98.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.61713555044531, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.6153846153846154, \"recall\": 0.5161290322580645, \"f1-score\": 0.5614035087719298, \"support\": 31.0}, \"2\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7379911754911754, \"recall\": 0.7931666545577836, \"f1-score\": 0.7598895643400287, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6912780705884154, \"recall\": 0.6896551724137931, \"f1-score\": 0.6854855128501973, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.98895643400287, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 68.54855128501973, + "eval_loss": 1.3013519048690796, + "eval_runtime": 3.7957, + "eval_samples_per_second": 30.561, + "step": 1568 + }, + { + "epoch": 99.0, + "learning_rate": 0.00016833333333333332, + "loss": 0.0183, + "step": 1584 + }, + { + "epoch": 99.0, + "eval_accuracy": 68.10344827586206, + "eval_average_metrics": 69.821325191705, + "eval_classification_report": "{\"0\": {\"precision\": 0.7857142857142857, \"recall\": 0.5945945945945946, \"f1-score\": 0.676923076923077, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.5806451612903226, \"f1-score\": 0.6206896551724138, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.5384615384615384, \"recall\": 0.7777777777777778, \"f1-score\": 0.6363636363636364, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6810344827586207, \"recall\": 0.6810344827586207, \"f1-score\": 0.6810344827586207, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7330974033276665, \"recall\": 0.7805855250411702, \"f1-score\": 0.7473138023297923, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7068597615330827, \"recall\": 0.6810344827586207, \"f1-score\": 0.6834702398211662, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6810344827586207, \"recall\": 0.6810344827586207, \"f1-score\": 0.6810344827586207, \"support\": 116.0}}", + "eval_f1_macro": 74.73138023297923, + "eval_f1_micro": 68.10344827586206, + "eval_f1_weighted": 68.34702398211661, + "eval_loss": 1.3164236545562744, + "eval_runtime": 3.7338, + "eval_samples_per_second": 31.068, + "step": 1584 + }, + { + "epoch": 100.0, + "learning_rate": 0.00016666666666666666, + "loss": 0.0087, + "step": 1600 + }, + { + "epoch": 100.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.21172567257393, + "eval_classification_report": "{\"0\": {\"precision\": 0.7428571428571429, \"recall\": 0.7027027027027027, \"f1-score\": 0.7222222222222223, \"support\": 37.0}, \"1\": {\"precision\": 0.75, \"recall\": 0.4838709677419355, \"f1-score\": 0.5882352941176471, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7428571428571429, \"recall\": 0.792418931027802, \"f1-score\": 0.7564230736154111, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.719896004378763, \"recall\": 0.6982758620689655, \"f1-score\": 0.6954942291496152, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 75.6423073615411, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.54942291496153, + "eval_loss": 1.3413798809051514, + "eval_runtime": 3.7688, + "eval_samples_per_second": 30.779, + "step": 1600 + }, + { + "epoch": 101.0, + "learning_rate": 0.000165, + "loss": 0.0137, + "step": 1616 + }, + { + "epoch": 101.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.1576191813798, + "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.7027027027027027, \"f1-score\": 0.7323943661971832, \"support\": 37.0}, \"1\": {\"precision\": 0.7272727272727273, \"recall\": 0.5161290322580645, \"f1-score\": 0.6037735849056604, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7549001039809864, \"recall\": 0.796451189092318, \"f1-score\": 0.7660707014901946, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7274963120044255, \"recall\": 0.7068965517241379, \"f1-score\": 0.7064409623167214, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 76.60707014901946, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.64409623167214, + "eval_loss": 1.3790944814682007, + "eval_runtime": 3.4205, + "eval_samples_per_second": 33.913, + "step": 1616 + }, + { + "epoch": 102.0, + "learning_rate": 0.0001633333333333333, + "loss": 0.0137, + "step": 1632 + }, + { + "epoch": 102.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.47481420895899, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.6428571428571429, \"recall\": 0.5806451612903226, \"f1-score\": 0.6101694915254238, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7667207792207793, \"recall\": 0.8012311706868158, \"f1-score\": 0.7797486300497005, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7112964621585312, \"recall\": 0.7068965517241379, \"f1-score\": 0.705450834860383, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.97486300497005, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.5450834860383, + "eval_loss": 1.2836179733276367, + "eval_runtime": 3.617, + "eval_samples_per_second": 32.071, + "step": 1632 + }, + { + "epoch": 103.0, + "learning_rate": 0.00016166666666666665, + "loss": 0.0098, + "step": 1648 + }, + { + "epoch": 103.0, + "eval_accuracy": 68.10344827586206, + "eval_average_metrics": 69.6101371583116, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6521739130434783, \"recall\": 0.4838709677419355, \"f1-score\": 0.5555555555555556, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6810344827586207, \"recall\": 0.6810344827586207, \"f1-score\": 0.6810344827586207, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7206570437899329, \"recall\": 0.7891343964932674, \"f1-score\": 0.7445845004668534, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6957978671954345, \"recall\": 0.6810344827586207, \"f1-score\": 0.6777520203483692, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6810344827586207, \"recall\": 0.6810344827586207, \"f1-score\": 0.6810344827586207, \"support\": 116.0}}", + "eval_f1_macro": 74.45845004668534, + "eval_f1_micro": 68.10344827586206, + "eval_f1_weighted": 67.77520203483692, + "eval_loss": 1.3221709728240967, + "eval_runtime": 3.5928, + "eval_samples_per_second": 32.287, + "step": 1648 + }, + { + "epoch": 104.0, + "learning_rate": 0.00015999999999999999, + "loss": 0.0198, + "step": 1664 + }, + { + "epoch": 104.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.2540549428292, + "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6756756756756757, \"f1-score\": 0.7042253521126761, \"support\": 37.0}, \"1\": {\"precision\": 0.75, \"recall\": 0.4838709677419355, \"f1-score\": 0.5882352941176471, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7410345717234261, \"recall\": 0.8029294415383125, \"f1-score\": 0.7598264582222409, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7176197762831691, \"recall\": 0.6982758620689655, \"f1-score\": 0.6937840153529962, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 75.9826458222241, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.37840153529962, + "eval_loss": 1.3122804164886475, + "eval_runtime": 3.403, + "eval_samples_per_second": 34.088, + "step": 1664 + }, + { + "epoch": 105.0, + "learning_rate": 0.00015833333333333332, + "loss": 0.0149, + "step": 1680 + }, + { + "epoch": 105.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.26486485398758, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6551724137931034, \"recall\": 0.6129032258064516, \"f1-score\": 0.6333333333333333, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7729731442624239, \"recall\": 0.8052634287513319, \"f1-score\": 0.7832749766573297, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7278687831481164, \"recall\": 0.7155172413793104, \"f1-score\": 0.7162851347435526, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 78.32749766573298, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.62851347435526, + "eval_loss": 1.2818881273269653, + "eval_runtime": 3.6298, + "eval_samples_per_second": 31.958, + "step": 1680 + }, + { + "epoch": 106.0, + "learning_rate": 0.00015666666666666666, + "loss": 0.0185, + "step": 1696 + }, + { + "epoch": 106.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.61845509536899, + "eval_classification_report": "{\"0\": {\"precision\": 0.8148148148148148, \"recall\": 0.5945945945945946, \"f1-score\": 0.6875, \"support\": 37.0}, \"1\": {\"precision\": 0.6551724137931034, \"recall\": 0.6129032258064516, \"f1-score\": 0.6333333333333333, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.5714285714285714, \"recall\": 0.8888888888888888, \"f1-score\": 0.6956521739130435, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7583335406611268, \"recall\": 0.7985066719945753, \"f1-score\": 0.7673384661835749, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7269708866022777, \"recall\": 0.6982758620689655, \"f1-score\": 0.7008480134932533, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.73384661835749, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 70.08480134932533, + "eval_loss": 1.3226778507232666, + "eval_runtime": 3.4832, + "eval_samples_per_second": 33.303, + "step": 1696 + }, + { + "epoch": 107.0, + "learning_rate": 0.000155, + "loss": 0.0131, + "step": 1712 + }, + { + "epoch": 107.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.20090458785963, + "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6756756756756757, \"f1-score\": 0.7042253521126761, \"support\": 37.0}, \"1\": {\"precision\": 0.7619047619047619, \"recall\": 0.5161290322580645, \"f1-score\": 0.6153846153846153, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7546754447392992, \"recall\": 0.8069616996028286, \"f1-score\": 0.7696539469100236, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7275062021178706, \"recall\": 0.7068965517241379, \"f1-score\": 0.7045891331560854, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 76.96539469100236, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.45891331560854, + "eval_loss": 1.3033111095428467, + "eval_runtime": 3.7412, + "eval_samples_per_second": 31.006, + "step": 1712 + }, + { + "epoch": 108.0, + "learning_rate": 0.0001533333333333333, + "loss": 0.0062, + "step": 1728 + }, + { + "epoch": 108.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.09146892875158, + "eval_classification_report": "{\"0\": {\"precision\": 0.8275862068965517, \"recall\": 0.6486486486486487, \"f1-score\": 0.7272727272727273, \"support\": 37.0}, \"1\": {\"precision\": 0.6896551724137931, \"recall\": 0.6451612903225806, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.780810143174027, \"recall\": 0.8092956868158481, \"f1-score\": 0.7869442055774823, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.74986388384755, \"recall\": 0.7241379310344828, \"f1-score\": 0.7284386895036156, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.69442055774823, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.84386895036155, + "eval_loss": 1.3282397985458374, + "eval_runtime": 3.5764, + "eval_samples_per_second": 32.435, + "step": 1728 + }, + { + "epoch": 109.0, + "learning_rate": 0.00015166666666666665, + "loss": 0.0193, + "step": 1744 + }, + { + "epoch": 109.0, + "eval_accuracy": 74.13793103448276, + "eval_average_metrics": 75.57489199900724, + "eval_classification_report": "{\"0\": {\"precision\": 0.8275862068965517, \"recall\": 0.6486486486486487, \"f1-score\": 0.7272727272727273, \"support\": 37.0}, \"1\": {\"precision\": 0.6571428571428571, \"recall\": 0.7419354838709677, \"f1-score\": 0.6969696969696969, \"support\": 31.0}, \"2\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7941048415186346, \"recall\": 0.8075035721205075, \"f1-score\": 0.7969518055044371, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7563247988634434, \"recall\": 0.7413793103448276, \"f1-score\": 0.7432852537661975, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7413793103448276, \"recall\": 0.7413793103448276, \"f1-score\": 0.7413793103448276, \"support\": 116.0}}", + "eval_f1_macro": 79.69518055044371, + "eval_f1_micro": 74.13793103448276, + "eval_f1_weighted": 74.32852537661975, + "eval_loss": 1.3133127689361572, + "eval_runtime": 3.6098, + "eval_samples_per_second": 32.135, + "step": 1744 + }, + { + "epoch": 110.0, + "learning_rate": 0.00015, + "loss": 0.0194, + "step": 1760 + }, + { + "epoch": 110.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.1602296049255, + "eval_classification_report": "{\"0\": {\"precision\": 0.7222222222222222, \"recall\": 0.7027027027027027, \"f1-score\": 0.7123287671232876, \"support\": 37.0}, \"1\": {\"precision\": 0.75, \"recall\": 0.4838709677419355, \"f1-score\": 0.5882352941176471, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7362522281639929, \"recall\": 0.7958911532500241, \"f1-score\": 0.7566943822503269, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7115762083307723, \"recall\": 0.6982758620689655, \"f1-score\": 0.6931630778087619, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 75.66943822503269, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.31630778087619, + "eval_loss": 1.339389443397522, + "eval_runtime": 3.6747, + "eval_samples_per_second": 31.567, + "step": 1760 + }, + { + "epoch": 111.0, + "learning_rate": 0.00014833333333333332, + "loss": 0.0107, + "step": 1776 + }, + { + "epoch": 111.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.64706597796513, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.6538461538461539, \"recall\": 0.5483870967741935, \"f1-score\": 0.5964912280701755, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7592708761826409, \"recall\": 0.7971989126222997, \"f1-score\": 0.7722917206810129, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7069309493751684, \"recall\": 0.6982758620689655, \"f1-score\": 0.6970391942996612, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.22917206810129, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.70391942996612, + "eval_loss": 1.293153166770935, + "eval_runtime": 3.5435, + "eval_samples_per_second": 32.736, + "step": 1776 + }, + { + "epoch": 112.0, + "learning_rate": 0.00014666666666666664, + "loss": 0.0065, + "step": 1792 + }, + { + "epoch": 112.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.78767353697377, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6538461538461539, \"recall\": 0.5483870967741935, \"f1-score\": 0.5964912280701755, \"support\": 31.0}, \"2\": {\"precision\": 0.45, \"recall\": 0.75, \"f1-score\": 0.5625000000000001, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7518004173246109, \"recall\": 0.7833100237334107, \"f1-score\": 0.7596442853457173, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7115660757485006, \"recall\": 0.6896551724137931, \"f1-score\": 0.6925523113056474, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.96442853457172, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 69.25523113056474, + "eval_loss": 1.3446911573410034, + "eval_runtime": 3.5143, + "eval_samples_per_second": 33.008, + "step": 1792 + }, + { + "epoch": 113.0, + "learning_rate": 0.000145, + "loss": 0.0154, + "step": 1808 + }, + { + "epoch": 113.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.5117776614576, + "eval_classification_report": "{\"0\": {\"precision\": 0.7666666666666667, \"recall\": 0.6216216216216216, \"f1-score\": 0.6865671641791045, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7516098484848486, \"recall\": 0.804237200910588, \"f1-score\": 0.7662186227951153, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7212578369905956, \"recall\": 0.6982758620689655, \"f1-score\": 0.6977007595252577, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.62186227951153, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.77007595252577, + "eval_loss": 1.36154305934906, + "eval_runtime": 3.495, + "eval_samples_per_second": 33.191, + "step": 1808 + }, + { + "epoch": 114.0, + "learning_rate": 0.00014333333333333334, + "loss": 0.0065, + "step": 1824 + }, + { + "epoch": 114.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.42569306317803, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.5806451612903226, \"f1-score\": 0.6206896551724138, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.763714349376114, \"recall\": 0.8012311706868158, \"f1-score\": 0.7765587600936374, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7176063372057286, \"recall\": 0.7068965517241379, \"f1-score\": 0.706675858985208, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.65587600936374, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.6675858985208, + "eval_loss": 1.3255561590194702, + "eval_runtime": 3.5377, + "eval_samples_per_second": 32.79, + "step": 1824 + }, + { + "epoch": 115.0, + "learning_rate": 0.00014166666666666665, + "loss": 0.0081, + "step": 1840 + }, + { + "epoch": 115.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.66670717742633, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7614813311688311, \"recall\": 0.7971989126222997, \"f1-score\": 0.7740131578947369, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7040875503806538, \"recall\": 0.6982758620689655, \"f1-score\": 0.6961034050643851, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.40131578947368, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.6103405064385, + "eval_loss": 1.3067268133163452, + "eval_runtime": 3.5599, + "eval_samples_per_second": 32.585, + "step": 1840 + }, + { + "epoch": 116.0, + "learning_rate": 0.00014, + "loss": 0.0112, + "step": 1856 + }, + { + "epoch": 116.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.41190937782984, + "eval_classification_report": "{\"0\": {\"precision\": 0.8, \"recall\": 0.6486486486486487, \"f1-score\": 0.7164179104477612, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7424112838915471, \"recall\": 0.7971989126222997, \"f1-score\": 0.7609972323381877, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7186178023428478, \"recall\": 0.6982758620689655, \"f1-score\": 0.6989274186370747, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.09972323381878, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.89274186370747, + "eval_loss": 1.343748688697815, + "eval_runtime": 3.4664, + "eval_samples_per_second": 33.464, + "step": 1856 + }, + { + "epoch": 117.0, + "learning_rate": 0.00013833333333333333, + "loss": 0.0042, + "step": 1872 + }, + { + "epoch": 117.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.2951089171353, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.5806451612903226, \"f1-score\": 0.6206896551724138, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7540719696969698, \"recall\": 0.8012311706868158, \"f1-score\": 0.7737719838389077, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7090386624869384, \"recall\": 0.7068965517241379, \"f1-score\": 0.7042392693982281, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.37719838389077, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.4239269398228, + "eval_loss": 1.316776156425476, + "eval_runtime": 3.4378, + "eval_samples_per_second": 33.743, + "step": 1872 + }, + { + "epoch": 118.0, + "learning_rate": 0.00013666666666666666, + "loss": 0.0105, + "step": 1888 + }, + { + "epoch": 118.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.40605104715813, + "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.6756756756756757, \"f1-score\": 0.6944444444444444, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7650527597402597, \"recall\": 0.8005772910006781, \"f1-score\": 0.777485380116959, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7132008508732647, \"recall\": 0.7068965517241379, \"f1-score\": 0.70496355832109, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.7485380116959, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.496355832109, + "eval_loss": 1.341773271560669, + "eval_runtime": 3.6062, + "eval_samples_per_second": 32.167, + "step": 1888 + }, + { + "epoch": 119.0, + "learning_rate": 0.000135, + "loss": 0.005, + "step": 1904 + }, + { + "epoch": 119.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.63920506851838, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6538461538461539, \"recall\": 0.5483870967741935, \"f1-score\": 0.5964912280701755, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7584353146853147, \"recall\": 0.7971989126222997, \"f1-score\": 0.7709477498093058, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7111375693272245, \"recall\": 0.6982758620689655, \"f1-score\": 0.698068728793498, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.09477498093058, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.8068728793498, + "eval_loss": 1.366753101348877, + "eval_runtime": 3.5814, + "eval_samples_per_second": 32.389, + "step": 1904 + }, + { + "epoch": 120.0, + "learning_rate": 0.0001333333333333333, + "loss": 0.0043, + "step": 1920 + }, + { + "epoch": 120.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.09692307566027, + "eval_classification_report": "{\"0\": {\"precision\": 0.7027027027027027, \"recall\": 0.7027027027027027, \"f1-score\": 0.7027027027027027, \"support\": 37.0}, \"1\": {\"precision\": 0.7727272727272727, \"recall\": 0.5483870967741935, \"f1-score\": 0.6415094339622641, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7685670045045045, \"recall\": 0.8039556693790564, \"f1-score\": 0.7786468178350006, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7301724137931035, \"recall\": 0.7155172413793104, \"f1-score\": 0.7141956224327899, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.86468178350006, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.41956224327899, + "eval_loss": 1.363035798072815, + "eval_runtime": 3.4602, + "eval_samples_per_second": 33.524, + "step": 1920 + }, + { + "epoch": 121.0, + "learning_rate": 0.00013166666666666665, + "loss": 0.0083, + "step": 1936 + }, + { + "epoch": 121.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.66647419301046, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.6538461538461539, \"recall\": 0.5483870967741935, \"f1-score\": 0.5964912280701755, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7607331088029617, \"recall\": 0.7971989126222997, \"f1-score\": 0.7738554131808395, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7035310784550136, \"recall\": 0.6982758620689655, \"f1-score\": 0.6962518304016476, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.38554131808395, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.62518304016476, + "eval_loss": 1.3458726406097412, + "eval_runtime": 3.4921, + "eval_samples_per_second": 33.218, + "step": 1936 + }, + { + "epoch": 122.0, + "learning_rate": 0.00013, + "loss": 0.004, + "step": 1952 + }, + { + "epoch": 122.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.49080270719904, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.6538461538461539, \"recall\": 0.5483870967741935, \"f1-score\": 0.5964912280701755, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7477819055944056, \"recall\": 0.7971989126222997, \"f1-score\": 0.7677709899749373, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7017331806124909, \"recall\": 0.6982758620689655, \"f1-score\": 0.695309394175093, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.77709899749374, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.5309394175093, + "eval_loss": 1.35368013381958, + "eval_runtime": 3.623, + "eval_samples_per_second": 32.018, + "step": 1952 + }, + { + "epoch": 123.0, + "learning_rate": 0.00012833333333333333, + "loss": 0.0052, + "step": 1968 + }, + { + "epoch": 123.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.34547764067955, + "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.6756756756756757, \"f1-score\": 0.6944444444444444, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7619656385281386, \"recall\": 0.8005772910006781, \"f1-score\": 0.7746985835801625, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7166582698910285, \"recall\": 0.7068965517241379, \"f1-score\": 0.7053274185987434, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.46985835801625, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.53274185987433, + "eval_loss": 1.3497411012649536, + "eval_runtime": 3.2967, + "eval_samples_per_second": 35.187, + "step": 1968 + }, + { + "epoch": 124.0, + "learning_rate": 0.00012666666666666666, + "loss": 0.0064, + "step": 1984 + }, + { + "epoch": 124.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.71047788038983, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.6538461538461539, \"recall\": 0.5483870967741935, \"f1-score\": 0.5964912280701755, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7642684623383152, \"recall\": 0.7971989126222997, \"f1-score\": 0.774941461635309, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7057254358217847, \"recall\": 0.6982758620689655, \"f1-score\": 0.6969259294423529, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.4941461635309, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.69259294423529, + "eval_loss": 1.3298336267471313, + "eval_runtime": 3.5956, + "eval_samples_per_second": 32.262, + "step": 1984 + }, + { + "epoch": 125.0, + "learning_rate": 0.000125, + "loss": 0.0082, + "step": 2000 + }, + { + "epoch": 125.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.6266980682483, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7594466726084372, \"recall\": 0.7971989126222997, \"f1-score\": 0.7705425561029009, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7120002765996681, \"recall\": 0.6982758620689655, \"f1-score\": 0.6979736424891003, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.05425561029008, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.79736424891003, + "eval_loss": 1.3586560487747192, + "eval_runtime": 3.3175, + "eval_samples_per_second": 34.966, + "step": 2000 + }, + { + "epoch": 126.0, + "learning_rate": 0.0001233333333333333, + "loss": 0.0044, + "step": 2016 + }, + { + "epoch": 126.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.71047788038983, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.6538461538461539, \"recall\": 0.5483870967741935, \"f1-score\": 0.5964912280701755, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7642684623383152, \"recall\": 0.7971989126222997, \"f1-score\": 0.774941461635309, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7057254358217847, \"recall\": 0.6982758620689655, \"f1-score\": 0.6969259294423529, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.4941461635309, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.69259294423529, + "eval_loss": 1.3523025512695312, + "eval_runtime": 3.4003, + "eval_samples_per_second": 34.115, + "step": 2016 + }, + { + "epoch": 127.0, + "learning_rate": 0.00012166666666666665, + "loss": 0.0112, + "step": 2032 + }, + { + "epoch": 127.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.35214986799124, + "eval_classification_report": "{\"0\": {\"precision\": 0.6944444444444444, \"recall\": 0.6756756756756757, \"f1-score\": 0.684931506849315, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7633351174791392, \"recall\": 0.8005772910006781, \"f1-score\": 0.7749404428117478, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.718559848863447, \"recall\": 0.7068965517241379, \"f1-score\": 0.7053524484596259, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.49404428117478, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.53524484596258, + "eval_loss": 1.3570890426635742, + "eval_runtime": 3.5517, + "eval_samples_per_second": 32.661, + "step": 2032 + }, + { + "epoch": 128.0, + "learning_rate": 0.00011999999999999999, + "loss": 0.0035, + "step": 2048 + }, + { + "epoch": 128.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.58269438086894, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7559113190730837, \"recall\": 0.7971989126222997, \"f1-score\": 0.7694565076484314, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7098059192328969, \"recall\": 0.6982758620689655, \"f1-score\": 0.6972995434483951, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.94565076484314, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.72995434483951, + "eval_loss": 1.37178635597229, + "eval_runtime": 3.327, + "eval_samples_per_second": 34.866, + "step": 2048 + }, + { + "epoch": 129.0, + "learning_rate": 0.00011833333333333331, + "loss": 0.0016, + "step": 2064 + }, + { + "epoch": 129.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.19433178764652, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6923076923076923, \"recall\": 0.5806451612903226, \"f1-score\": 0.631578947368421, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7476898832508415, \"recall\": 0.8012311706868158, \"f1-score\": 0.7677403606633216, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7194404782222946, \"recall\": 0.7068965517241379, \"f1-score\": 0.7062398073942637, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 76.77403606633216, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.62398073942637, + "eval_loss": 1.3781315088272095, + "eval_runtime": 3.448, + "eval_samples_per_second": 33.643, + "step": 2064 + }, + { + "epoch": 130.0, + "learning_rate": 0.00011666666666666665, + "loss": 0.0034, + "step": 2080 + }, + { + "epoch": 130.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.27256696600176, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6785714285714286, \"recall\": 0.6129032258064516, \"f1-score\": 0.6440677966101694, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7731569900687548, \"recall\": 0.8052634287513319, \"f1-score\": 0.7840862909312516, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7257250862727536, \"recall\": 0.7155172413793104, \"f1-score\": 0.715781904950198, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 78.40862909312516, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.5781904950198, + "eval_loss": 1.4012339115142822, + "eval_runtime": 3.4996, + "eval_samples_per_second": 33.146, + "step": 2080 + }, + { + "epoch": 131.0, + "learning_rate": 0.000115, + "loss": 0.0056, + "step": 2096 + }, + { + "epoch": 131.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.27256696600176, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6785714285714286, \"recall\": 0.6129032258064516, \"f1-score\": 0.6440677966101694, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7731569900687548, \"recall\": 0.8052634287513319, \"f1-score\": 0.7840862909312516, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7257250862727536, \"recall\": 0.7155172413793104, \"f1-score\": 0.715781904950198, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 78.40862909312516, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.5781904950198, + "eval_loss": 1.3938053846359253, + "eval_runtime": 3.7557, + "eval_samples_per_second": 30.887, + "step": 2096 + }, + { + "epoch": 132.0, + "learning_rate": 0.00011333333333333331, + "loss": 0.0058, + "step": 2112 + }, + { + "epoch": 132.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 73.91620508815342, + "eval_classification_report": "{\"0\": {\"precision\": 0.7027027027027027, \"recall\": 0.7027027027027027, \"f1-score\": 0.7027027027027027, \"support\": 37.0}, \"1\": {\"precision\": 0.8095238095238095, \"recall\": 0.5483870967741935, \"f1-score\": 0.6538461538461537, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7763834833687775, \"recall\": 0.8143723360457231, \"f1-score\": 0.7860386615150681, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7426682428457276, \"recall\": 0.7241379310344828, \"f1-score\": 0.7223336799421034, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.60386615150681, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.23336799421034, + "eval_loss": 1.3804042339324951, + "eval_runtime": 3.5404, + "eval_samples_per_second": 32.764, + "step": 2112 + }, + { + "epoch": 133.0, + "learning_rate": 0.00011166666666666667, + "loss": 0.0032, + "step": 2128 + }, + { + "epoch": 133.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.64130408036374, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.6956521739130435, \"recall\": 0.5161290322580645, \"f1-score\": 0.5925925925925926, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7411840650291737, \"recall\": 0.7931666545577836, \"f1-score\": 0.7607360414926204, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.6955353492085126, \"recall\": 0.6896551724137931, \"f1-score\": 0.6856057768943431, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 76.07360414926204, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 68.56057768943431, + "eval_loss": 1.3486489057540894, + "eval_runtime": 3.5633, + "eval_samples_per_second": 32.554, + "step": 2128 + }, + { + "epoch": 134.0, + "learning_rate": 0.00010999999999999998, + "loss": 0.0196, + "step": 2144 + }, + { + "epoch": 134.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.35883299119956, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.6551724137931034, \"recall\": 0.6129032258064516, \"f1-score\": 0.6333333333333333, \"support\": 31.0}, \"2\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7788980796080187, \"recall\": 0.8052634287513319, \"f1-score\": 0.7892472581779475, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.717135621949569, \"recall\": 0.7155172413793104, \"f1-score\": 0.714071578711414, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 78.92472581779475, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.40715787114141, + "eval_loss": 1.347411870956421, + "eval_runtime": 3.5058, + "eval_samples_per_second": 33.088, + "step": 2144 + }, + { + "epoch": 135.0, + "learning_rate": 0.00010833333333333333, + "loss": 0.0054, + "step": 2160 + }, + { + "epoch": 135.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.83781285478302, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6774193548387096, \"recall\": 0.6774193548387096, \"f1-score\": 0.6774193548387096, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7848607038123168, \"recall\": 0.8133279448803642, \"f1-score\": 0.7952811345251174, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7404363434118718, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327141382868936, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 79.52811345251175, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.27141382868936, + "eval_loss": 1.3755097389221191, + "eval_runtime": 3.6961, + "eval_samples_per_second": 31.385, + "step": 2160 + }, + { + "epoch": 136.0, + "learning_rate": 0.00010666666666666667, + "loss": 0.0134, + "step": 2176 + }, + { + "epoch": 136.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.41511645493043, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.72, \"recall\": 0.5806451612903226, \"f1-score\": 0.6428571428571428, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7645400432900433, \"recall\": 0.8012311706868158, \"f1-score\": 0.7772869674185463, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7145420958351993, \"recall\": 0.7068965517241379, \"f1-score\": 0.7055245873303948, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.72869674185463, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.55245873303949, + "eval_loss": 1.371156096458435, + "eval_runtime": 3.6597, + "eval_samples_per_second": 31.696, + "step": 2176 + }, + { + "epoch": 137.0, + "learning_rate": 0.00010499999999999999, + "loss": 0.0044, + "step": 2192 + }, + { + "epoch": 137.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.02667228415868, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.6896551724137931, \"recall\": 0.6451612903225806, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7774802065750341, \"recall\": 0.8092956868158481, \"f1-score\": 0.789310776942356, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7292374836815978, \"recall\": 0.7241379310344828, \"f1-score\": 0.7234802523550256, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.9310776942356, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.34802523550256, + "eval_loss": 1.383325457572937, + "eval_runtime": 3.714, + "eval_samples_per_second": 31.234, + "step": 2192 + }, + { + "epoch": 138.0, + "learning_rate": 0.00010333333333333333, + "loss": 0.0105, + "step": 2208 + }, + { + "epoch": 138.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.33113216594465, + "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.6756756756756757, \"f1-score\": 0.6944444444444444, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7616792467975333, \"recall\": 0.8005772910006781, \"f1-score\": 0.7733586240505479, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7214656088685986, \"recall\": 0.7068965517241379, \"f1-score\": 0.7060935591389624, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.33586240505478, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.60935591389624, + "eval_loss": 1.3874599933624268, + "eval_runtime": 3.64, + "eval_samples_per_second": 31.868, + "step": 2208 + }, + { + "epoch": 139.0, + "learning_rate": 0.00010166666666666667, + "loss": 0.0074, + "step": 2224 + }, + { + "epoch": 139.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.05180985635003, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6896551724137931, \"recall\": 0.6451612903225806, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.778678487460815, \"recall\": 0.8092956868158481, \"f1-score\": 0.7896820856489049, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7321100421576046, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241144465361306, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.96820856489049, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.41144465361306, + "eval_loss": 1.3717989921569824, + "eval_runtime": 3.4759, + "eval_samples_per_second": 33.373, + "step": 2224 + }, + { + "epoch": 140.0, + "learning_rate": 9.999999999999999e-05, + "loss": 0.0079, + "step": 2240 + }, + { + "epoch": 140.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.34210783912513, + "eval_classification_report": "{\"0\": {\"precision\": 0.8, \"recall\": 0.6486486486486487, \"f1-score\": 0.7164179104477612, \"support\": 37.0}, \"1\": {\"precision\": 0.7037037037037037, \"recall\": 0.6129032258064516, \"f1-score\": 0.6551724137931035, \"support\": 31.0}, \"2\": {\"precision\": 0.45, \"recall\": 0.75, \"f1-score\": 0.5625000000000001, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7612584175084175, \"recall\": 0.791374539862443, \"f1-score\": 0.7682963782494063, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.733121444328341, \"recall\": 0.7068965517241379, \"f1-score\": 0.7115948318673234, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 76.82963782494063, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 71.15948318673234, + "eval_loss": 1.4377094507217407, + "eval_runtime": 3.3189, + "eval_samples_per_second": 34.951, + "step": 2240 + }, + { + "epoch": 141.0, + "learning_rate": 9.833333333333333e-05, + "loss": 0.0098, + "step": 2256 + }, + { + "epoch": 141.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.26442444313896, + "eval_classification_report": "{\"0\": {\"precision\": 0.7575757575757576, \"recall\": 0.6756756756756757, \"f1-score\": 0.7142857142857142, \"support\": 37.0}, \"1\": {\"precision\": 0.7727272727272727, \"recall\": 0.5483870967741935, \"f1-score\": 0.6415094339622641, \"support\": 31.0}, \"2\": {\"precision\": 0.47619047619047616, \"recall\": 0.8333333333333334, \"f1-score\": 0.6060606060606061, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.761228354978355, \"recall\": 0.7971050687784558, \"f1-score\": 0.7676003903412046, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7366304672339155, \"recall\": 0.7068965517241379, \"f1-score\": 0.7091834839360778, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 76.76003903412047, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.91834839360777, + "eval_loss": 1.471474051475525, + "eval_runtime": 3.4445, + "eval_samples_per_second": 33.677, + "step": 2256 + }, + { + "epoch": 142.0, + "learning_rate": 9.666666666666667e-05, + "loss": 0.0053, + "step": 2272 + }, + { + "epoch": 142.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.05194605181445, + "eval_classification_report": "{\"0\": {\"precision\": 0.8275862068965517, \"recall\": 0.6486486486486487, \"f1-score\": 0.7272727272727273, \"support\": 37.0}, \"1\": {\"precision\": 0.7142857142857143, \"recall\": 0.6451612903225806, \"f1-score\": 0.6779661016949152, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7623611831302395, \"recall\": 0.7954067979269592, \"f1-score\": 0.7706039198348772, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7430841148650461, \"recall\": 0.7155172413793104, \"f1-score\": 0.7204394394790801, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.06039198348772, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 72.043943947908, + "eval_loss": 1.4730260372161865, + "eval_runtime": 3.5715, + "eval_samples_per_second": 32.479, + "step": 2272 + }, + { + "epoch": 143.0, + "learning_rate": 9.499999999999999e-05, + "loss": 0.0069, + "step": 2288 + }, + { + "epoch": 143.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.28865134126794, + "eval_classification_report": "{\"0\": {\"precision\": 0.7575757575757576, \"recall\": 0.6756756756756757, \"f1-score\": 0.7142857142857142, \"support\": 37.0}, \"1\": {\"precision\": 0.7272727272727273, \"recall\": 0.5161290322580645, \"f1-score\": 0.6037735849056604, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7428977272727273, \"recall\": 0.7930728107139398, \"f1-score\": 0.7579591667848867, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7183254963427378, \"recall\": 0.6982758620689655, \"f1-score\": 0.6970351627278997, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 75.79591667848867, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.70351627278997, + "eval_loss": 1.441175103187561, + "eval_runtime": 3.6908, + "eval_samples_per_second": 31.43, + "step": 2288 + }, + { + "epoch": 144.0, + "learning_rate": 9.333333333333333e-05, + "loss": 0.0018, + "step": 2304 + }, + { + "epoch": 144.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.60228239825429, + "eval_classification_report": "{\"0\": {\"precision\": 0.7586206896551724, \"recall\": 0.5945945945945946, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.6785714285714286, \"recall\": 0.6129032258064516, \"f1-score\": 0.6440677966101694, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.756572091701402, \"recall\": 0.7985066719945753, \"f1-score\": 0.7687859865379936, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7167512184604932, \"recall\": 0.6982758620689655, \"f1-score\": 0.6987535852542466, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.87859865379936, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.87535852542466, + "eval_loss": 1.4303944110870361, + "eval_runtime": 3.5228, + "eval_samples_per_second": 32.928, + "step": 2304 + }, + { + "epoch": 145.0, + "learning_rate": 9.166666666666667e-05, + "loss": 0.0029, + "step": 2320 + }, + { + "epoch": 145.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.19592271163725, + "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6756756756756757, \"f1-score\": 0.7042253521126761, \"support\": 37.0}, \"1\": {\"precision\": 0.8, \"recall\": 0.5161290322580645, \"f1-score\": 0.6274509803921569, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.875, \"f1-score\": 0.875, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7401125222816399, \"recall\": 0.7930728107139398, \"f1-score\": 0.7543981380543321, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7250115249861699, \"recall\": 0.6982758620689655, \"f1-score\": 0.6968870462732267, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 75.4398138054332, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.68870462732268, + "eval_loss": 1.4481288194656372, + "eval_runtime": 3.6595, + "eval_samples_per_second": 31.698, + "step": 2320 + }, + { + "epoch": 146.0, + "learning_rate": 8.999999999999999e-05, + "loss": 0.0072, + "step": 2336 + }, + { + "epoch": 146.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.19060042347247, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.6896551724137931, \"recall\": 0.6451612903225806, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.772428487460815, \"recall\": 0.7954067979269592, \"f1-score\": 0.7805451127819549, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.722744838395849, \"recall\": 0.7155172413793104, \"f1-score\": 0.7160444213983234, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 78.05451127819549, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.60444213983233, + "eval_loss": 1.4168787002563477, + "eval_runtime": 3.507, + "eval_samples_per_second": 33.076, + "step": 2336 + }, + { + "epoch": 147.0, + "learning_rate": 8.833333333333333e-05, + "loss": 0.0015, + "step": 2352 + }, + { + "epoch": 147.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.66103318765603, + "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.6756756756756757, \"f1-score\": 0.6944444444444444, \"support\": 37.0}, \"1\": {\"precision\": 0.6538461538461539, \"recall\": 0.5483870967741935, \"f1-score\": 0.5964912280701755, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7653495197612845, \"recall\": 0.7866884021117893, \"f1-score\": 0.7713362068965518, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7075691043236683, \"recall\": 0.6982758620689655, \"f1-score\": 0.6985533964717581, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.13362068965517, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.85533964717581, + "eval_loss": 1.4095247983932495, + "eval_runtime": 3.5221, + "eval_samples_per_second": 32.935, + "step": 2352 + }, + { + "epoch": 148.0, + "learning_rate": 8.666666666666665e-05, + "loss": 0.0062, + "step": 2368 + }, + { + "epoch": 148.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.71338654208549, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7483771929824561, \"recall\": 0.7833100237334107, \"f1-score\": 0.7577984450959094, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7091742286751361, \"recall\": 0.6896551724137931, \"f1-score\": 0.6914266717599241, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.77984450959094, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 69.14266717599241, + "eval_loss": 1.4539296627044678, + "eval_runtime": 3.469, + "eval_samples_per_second": 33.439, + "step": 2368 + }, + { + "epoch": 149.0, + "learning_rate": 8.499999999999999e-05, + "loss": 0.0053, + "step": 2384 + }, + { + "epoch": 149.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.17429930678944, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6896551724137931, \"recall\": 0.6451612903225806, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7711333671399594, \"recall\": 0.7954067979269592, \"f1-score\": 0.7790164128462085, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7265711338042946, \"recall\": 0.7155172413793104, \"f1-score\": 0.7169210766667483, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.90164128462085, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.69210766667483, + "eval_loss": 1.4497323036193848, + "eval_runtime": 3.4699, + "eval_samples_per_second": 33.43, + "step": 2384 + }, + { + "epoch": 150.0, + "learning_rate": 8.333333333333333e-05, + "loss": 0.0106, + "step": 2400 + }, + { + "epoch": 150.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.40121264202513, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.7272727272727273, \"recall\": 0.5161290322580645, \"f1-score\": 0.6037735849056604, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7297979797979799, \"recall\": 0.7896944323355614, \"f1-score\": 0.7491961507088911, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.709204110066179, \"recall\": 0.6896551724137931, \"f1-score\": 0.6875420101445278, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 74.91961507088911, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 68.75420101445278, + "eval_loss": 1.4402832984924316, + "eval_runtime": 3.3211, + "eval_samples_per_second": 34.928, + "step": 2400 + }, + { + "epoch": 151.0, + "learning_rate": 8.166666666666665e-05, + "loss": 0.0025, + "step": 2416 + }, + { + "epoch": 151.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.73494910631119, + "eval_classification_report": "{\"0\": {\"precision\": 0.8275862068965517, \"recall\": 0.6486486486486487, \"f1-score\": 0.7272727272727273, \"support\": 37.0}, \"1\": {\"precision\": 0.7, \"recall\": 0.6774193548387096, \"f1-score\": 0.6885245901639343, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7775792919048496, \"recall\": 0.8133279448803642, \"f1-score\": 0.7889906961375379, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7512617077962955, \"recall\": 0.7327586206896551, \"f1-score\": 0.7348900267355997, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 78.8990696137538, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.48900267355997, + "eval_loss": 1.423824667930603, + "eval_runtime": 3.6763, + "eval_samples_per_second": 31.554, + "step": 2416 + }, + { + "epoch": 152.0, + "learning_rate": 7.999999999999999e-05, + "loss": 0.0015, + "step": 2432 + }, + { + "epoch": 152.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.73566962310841, + "eval_classification_report": "{\"0\": {\"precision\": 0.7419354838709677, \"recall\": 0.6216216216216216, \"f1-score\": 0.676470588235294, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7467441284663272, \"recall\": 0.7938205342439213, \"f1-score\": 0.7599134490962615, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.711587558300646, \"recall\": 0.6896551724137931, \"f1-score\": 0.6902029910004887, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.99134490962615, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 69.02029910004886, + "eval_loss": 1.4216960668563843, + "eval_runtime": 3.7204, + "eval_samples_per_second": 31.179, + "step": 2432 + }, + { + "epoch": 153.0, + "learning_rate": 7.833333333333333e-05, + "loss": 0.0086, + "step": 2448 + }, + { + "epoch": 153.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.63386645493044, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7595400432900433, \"recall\": 0.7971989126222997, \"f1-score\": 0.7728226817042606, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7038524406627855, \"recall\": 0.6982758620689655, \"f1-score\": 0.6959802523550256, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.28226817042606, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.59802523550256, + "eval_loss": 1.3871337175369263, + "eval_runtime": 3.6196, + "eval_samples_per_second": 32.047, + "step": 2448 + }, + { + "epoch": 154.0, + "learning_rate": 7.666666666666666e-05, + "loss": 0.0091, + "step": 2464 + }, + { + "epoch": 154.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.09692307566027, + "eval_classification_report": "{\"0\": {\"precision\": 0.7027027027027027, \"recall\": 0.7027027027027027, \"f1-score\": 0.7027027027027027, \"support\": 37.0}, \"1\": {\"precision\": 0.7727272727272727, \"recall\": 0.5483870967741935, \"f1-score\": 0.6415094339622641, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7685670045045045, \"recall\": 0.8039556693790564, \"f1-score\": 0.7786468178350006, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7301724137931035, \"recall\": 0.7155172413793104, \"f1-score\": 0.7141956224327899, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.86468178350006, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.41956224327899, + "eval_loss": 1.4031460285186768, + "eval_runtime": 3.5714, + "eval_samples_per_second": 32.481, + "step": 2464 + }, + { + "epoch": 155.0, + "learning_rate": 7.5e-05, + "loss": 0.0045, + "step": 2480 + }, + { + "epoch": 155.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.5837479199719, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7567791889483066, \"recall\": 0.7971989126222997, \"f1-score\": 0.769629134317537, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7105549665007068, \"recall\": 0.6982758620689655, \"f1-score\": 0.6971690583434078, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.9629134317537, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.71690583434078, + "eval_loss": 1.4398069381713867, + "eval_runtime": 3.6007, + "eval_samples_per_second": 32.216, + "step": 2480 + }, + { + "epoch": 156.0, + "learning_rate": 7.333333333333332e-05, + "loss": 0.0057, + "step": 2496 + }, + { + "epoch": 156.0, + "eval_accuracy": 73.27586206896551, + "eval_average_metrics": 74.76323225306108, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.7096774193548387, \"f1-score\": 0.6875, \"support\": 31.0}, \"2\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.732758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7854646697388633, \"recall\": 0.8034713140559915, \"f1-score\": 0.7918516065333016, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7398802902696118, \"recall\": 0.7327586206896551, \"f1-score\": 0.7331604422098309, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7327586206896551, \"recall\": 0.7327586206896551, \"f1-score\": 0.7327586206896551, \"support\": 116.0}}", + "eval_f1_macro": 79.18516065333016, + "eval_f1_micro": 73.27586206896551, + "eval_f1_weighted": 73.31604422098309, + "eval_loss": 1.4501067399978638, + "eval_runtime": 3.7775, + "eval_samples_per_second": 30.708, + "step": 2496 + }, + { + "epoch": 157.0, + "learning_rate": 7.166666666666667e-05, + "loss": 0.0087, + "step": 2512 + }, + { + "epoch": 157.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.71467757764759, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7496936274509804, \"recall\": 0.7833100237334107, \"f1-score\": 0.7591481905788799, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7053963826910075, \"recall\": 0.6896551724137931, \"f1-score\": 0.6901285676994375, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.914819057888, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 69.01285676994375, + "eval_loss": 1.424207091331482, + "eval_runtime": 3.8857, + "eval_samples_per_second": 29.853, + "step": 2512 + }, + { + "epoch": 158.0, + "learning_rate": 7e-05, + "loss": 0.0022, + "step": 2528 + }, + { + "epoch": 158.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.55421187444372, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.6428571428571429, \"recall\": 0.5806451612903226, \"f1-score\": 0.6101694915254238, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7720015278838809, \"recall\": 0.8012311706868158, \"f1-score\": 0.7831466497468307, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7094109744211166, \"recall\": 0.7068965517241379, \"f1-score\": 0.7052287217826425, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 78.31466497468307, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.52287217826425, + "eval_loss": 1.4173623323440552, + "eval_runtime": 3.6056, + "eval_samples_per_second": 32.173, + "step": 2528 + }, + { + "epoch": 159.0, + "learning_rate": 6.833333333333333e-05, + "loss": 0.0028, + "step": 2544 + }, + { + "epoch": 159.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.40349662367746, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.6785714285714286, \"recall\": 0.6129032258064516, \"f1-score\": 0.6440677966101694, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7660714285714286, \"recall\": 0.791374539862443, \"f1-score\": 0.7736053471925946, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7205665024630542, \"recall\": 0.7068965517241379, \"f1-score\": 0.7087414143062276, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.36053471925945, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.87414143062276, + "eval_loss": 1.4207048416137695, + "eval_runtime": 3.4597, + "eval_samples_per_second": 33.529, + "step": 2544 + }, + { + "epoch": 160.0, + "learning_rate": 6.666666666666666e-05, + "loss": 0.0027, + "step": 2560 + }, + { + "epoch": 160.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.51083242665264, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7556568979266347, \"recall\": 0.7937266904000775, \"f1-score\": 0.7660005953299671, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7149414975526592, \"recall\": 0.6982758620689655, \"f1-score\": 0.6978809775982073, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.60005953299671, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.78809775982073, + "eval_loss": 1.4207489490509033, + "eval_runtime": 3.4902, + "eval_samples_per_second": 33.236, + "step": 2560 + }, + { + "epoch": 161.0, + "learning_rate": 6.5e-05, + "loss": 0.0028, + "step": 2576 + }, + { + "epoch": 161.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.41817639234888, + "eval_classification_report": "{\"0\": {\"precision\": 0.8, \"recall\": 0.6486486486486487, \"f1-score\": 0.7164179104477612, \"support\": 37.0}, \"1\": {\"precision\": 0.6551724137931034, \"recall\": 0.6129032258064516, \"f1-score\": 0.6333333333333333, \"support\": 31.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.75, \"f1-score\": 0.5806451612903226, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7661070780399274, \"recall\": 0.791374539862443, \"f1-score\": 0.7724399015111201, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7275392702922585, \"recall\": 0.7068965517241379, \"f1-score\": 0.7104940507345596, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.243990151112, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 71.04940507345596, + "eval_loss": 1.4380279779434204, + "eval_runtime": 3.6174, + "eval_samples_per_second": 32.068, + "step": 2576 + }, + { + "epoch": 162.0, + "learning_rate": 6.333333333333333e-05, + "loss": 0.0046, + "step": 2592 + }, + { + "epoch": 162.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.43269812462191, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.6551724137931034, \"recall\": 0.6129032258064516, \"f1-score\": 0.6333333333333333, \"support\": 31.0}, \"2\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7681181426332289, \"recall\": 0.791374539862443, \"f1-score\": 0.7763784461152883, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7135296184196303, \"recall\": 0.7068965517241379, \"f1-score\": 0.7071363754213118, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.63784461152883, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.71363754213118, + "eval_loss": 1.4599300622940063, + "eval_runtime": 3.3321, + "eval_samples_per_second": 34.813, + "step": 2592 + }, + { + "epoch": 163.0, + "learning_rate": 6.166666666666666e-05, + "loss": 0.0016, + "step": 2608 + }, + { + "epoch": 163.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.72459204635368, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.749828431372549, \"recall\": 0.7833100237334107, \"f1-score\": 0.7603545273455616, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7008671399594322, \"recall\": 0.6896551724137931, \"f1-score\": 0.6893188096809993, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 76.03545273455616, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 68.93188096809993, + "eval_loss": 1.4228792190551758, + "eval_runtime": 3.4443, + "eval_samples_per_second": 33.679, + "step": 2608 + }, + { + "epoch": 164.0, + "learning_rate": 5.9999999999999995e-05, + "loss": 0.0049, + "step": 2624 + }, + { + "epoch": 164.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.26751555006071, + "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.6756756756756757, \"f1-score\": 0.6944444444444444, \"support\": 37.0}, \"1\": {\"precision\": 0.7727272727272727, \"recall\": 0.5483870967741935, \"f1-score\": 0.6415094339622641, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7620827637275005, \"recall\": 0.7971050687784558, \"f1-score\": 0.7700078171437927, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7280078134206991, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068997014103598, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.00078171437927, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.68997014103599, + "eval_loss": 1.4311120510101318, + "eval_runtime": 3.5498, + "eval_samples_per_second": 32.678, + "step": 2624 + }, + { + "epoch": 165.0, + "learning_rate": 5.8333333333333326e-05, + "loss": 0.0027, + "step": 2640 + }, + { + "epoch": 165.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.65289776793594, + "eval_classification_report": "{\"0\": {\"precision\": 0.7419354838709677, \"recall\": 0.6216216216216216, \"f1-score\": 0.676470588235294, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.47619047619047616, \"recall\": 0.8333333333333334, \"f1-score\": 0.6060606060606061, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7459828069312642, \"recall\": 0.7903483120216991, \"f1-score\": 0.7561253661485859, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7170206607002322, \"recall\": 0.6896551724137931, \"f1-score\": 0.6906801997412653, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.6125366148586, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 69.06801997412653, + "eval_loss": 1.45652174949646, + "eval_runtime": 3.474, + "eval_samples_per_second": 33.391, + "step": 2640 + }, + { + "epoch": 166.0, + "learning_rate": 5.666666666666666e-05, + "loss": 0.0038, + "step": 2656 + }, + { + "epoch": 166.0, + "eval_accuracy": 68.96551724137932, + "eval_average_metrics": 70.6793595030129, + "eval_classification_report": "{\"0\": {\"precision\": 0.7666666666666667, \"recall\": 0.6216216216216216, \"f1-score\": 0.6865671641791045, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.47619047619047616, \"recall\": 0.8333333333333334, \"f1-score\": 0.6060606060606061, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7463609307359308, \"recall\": 0.7903483120216991, \"f1-score\": 0.7566143564474279, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7173841244961935, \"recall\": 0.6896551724137931, \"f1-score\": 0.6912496788455018, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6896551724137931, \"recall\": 0.6896551724137931, \"f1-score\": 0.6896551724137931, \"support\": 116.0}}", + "eval_f1_macro": 75.6614356447428, + "eval_f1_micro": 68.96551724137932, + "eval_f1_weighted": 69.12496788455019, + "eval_loss": 1.452964425086975, + "eval_runtime": 3.5982, + "eval_samples_per_second": 32.239, + "step": 2656 + }, + { + "epoch": 167.0, + "learning_rate": 5.499999999999999e-05, + "loss": 0.003, + "step": 2672 + }, + { + "epoch": 167.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.52604768190068, + "eval_classification_report": "{\"0\": {\"precision\": 0.7931034482758621, \"recall\": 0.6216216216216216, \"f1-score\": 0.696969696969697, \"support\": 37.0}, \"1\": {\"precision\": 0.6923076923076923, \"recall\": 0.5806451612903226, \"f1-score\": 0.631578947368421, \"support\": 31.0}, \"2\": {\"precision\": 0.47619047619047616, \"recall\": 0.8333333333333334, \"f1-score\": 0.6060606060606061, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7542911111876629, \"recall\": 0.7943805700862152, \"f1-score\": 0.7637559808612441, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.725648251867039, \"recall\": 0.6982758620689655, \"f1-score\": 0.700734202276852, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.37559808612441, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 70.0734202276852, + "eval_loss": 1.456688642501831, + "eval_runtime": 3.4302, + "eval_samples_per_second": 33.818, + "step": 2672 + }, + { + "epoch": 168.0, + "learning_rate": 5.333333333333333e-05, + "loss": 0.0075, + "step": 2688 + }, + { + "epoch": 168.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.50598911818015, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7552083333333334, \"recall\": 0.7937266904000775, \"f1-score\": 0.7647226700644892, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7194683908045978, \"recall\": 0.6982758620689655, \"f1-score\": 0.6989651705247855, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.47226700644893, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.89651705247854, + "eval_loss": 1.453795313835144, + "eval_runtime": 3.7104, + "eval_samples_per_second": 31.263, + "step": 2688 + }, + { + "epoch": 169.0, + "learning_rate": 5.1666666666666664e-05, + "loss": 0.0074, + "step": 2704 + }, + { + "epoch": 169.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.41135753312422, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.6785714285714286, \"recall\": 0.6129032258064516, \"f1-score\": 0.6440677966101694, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7669069900687548, \"recall\": 0.791374539862443, \"f1-score\": 0.7749493180643017, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7163598825109981, \"recall\": 0.7068965517241379, \"f1-score\": 0.7077118798123909, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.49493180643017, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.7711879812391, + "eval_loss": 1.4481569528579712, + "eval_runtime": 3.5624, + "eval_samples_per_second": 32.563, + "step": 2704 + }, + { + "epoch": 170.0, + "learning_rate": 4.9999999999999996e-05, + "loss": 0.0018, + "step": 2720 + }, + { + "epoch": 170.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.26088087679473, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.75, \"recall\": 0.5806451612903226, \"f1-score\": 0.6545454545454547, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.773448242933537, \"recall\": 0.8116478373534826, \"f1-score\": 0.7857882362646428, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7254567187376517, \"recall\": 0.7155172413793104, \"f1-score\": 0.7136125160485258, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 78.57882362646428, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.36125160485258, + "eval_loss": 1.441033959388733, + "eval_runtime": 3.5298, + "eval_samples_per_second": 32.863, + "step": 2720 + }, + { + "epoch": 171.0, + "learning_rate": 4.8333333333333334e-05, + "loss": 0.0055, + "step": 2736 + }, + { + "epoch": 171.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.31317878793955, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7727272727272727, \"recall\": 0.5483870967741935, \"f1-score\": 0.6415094339622641, \"support\": 31.0}, \"2\": {\"precision\": 0.5555555555555556, \"recall\": 0.8333333333333334, \"f1-score\": 0.6666666666666667, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7605206476530006, \"recall\": 0.8076155792889663, \"f1-score\": 0.7735303079649696, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7257660274141006, \"recall\": 0.7068965517241379, \"f1-score\": 0.7052037401043364, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.35303079649695, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.52037401043364, + "eval_loss": 1.464901089668274, + "eval_runtime": 3.4485, + "eval_samples_per_second": 33.638, + "step": 2736 + }, + { + "epoch": 172.0, + "learning_rate": 4.6666666666666665e-05, + "loss": 0.0018, + "step": 2752 + }, + { + "epoch": 172.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.5842908741059, + "eval_classification_report": "{\"0\": {\"precision\": 0.6764705882352942, \"recall\": 0.6216216216216216, \"f1-score\": 0.6478873239436619, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7567295396419438, \"recall\": 0.804237200910588, \"f1-score\": 0.7713977688812177, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7107868859687803, \"recall\": 0.6982758620689655, \"f1-score\": 0.6954221419450871, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.13977688812177, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.54221419450872, + "eval_loss": 1.4550117254257202, + "eval_runtime": 3.5979, + "eval_samples_per_second": 32.241, + "step": 2752 + }, + { + "epoch": 173.0, + "learning_rate": 4.4999999999999996e-05, + "loss": 0.0048, + "step": 2768 + }, + { + "epoch": 173.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.10158620013885, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7307692307692307, \"recall\": 0.6129032258064516, \"f1-score\": 0.6666666666666667, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7815199506375977, \"recall\": 0.8156800954179986, \"f1-score\": 0.7930823598578769, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7316876835132413, \"recall\": 0.7241379310344828, \"f1-score\": 0.7227052260787118, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 79.30823598578769, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.27052260787119, + "eval_loss": 1.446254849433899, + "eval_runtime": 3.417, + "eval_samples_per_second": 33.948, + "step": 2768 + }, + { + "epoch": 174.0, + "learning_rate": 4.333333333333333e-05, + "loss": 0.0017, + "step": 2784 + }, + { + "epoch": 174.0, + "eval_accuracy": 72.41379310344827, + "eval_average_metrics": 74.06580244730601, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.7037037037037037, \"recall\": 0.6129032258064516, \"f1-score\": 0.6551724137931035, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344829, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7789357211046515, \"recall\": 0.8156800954179986, \"f1-score\": 0.7898120948514058, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.739838104519622, \"recall\": 0.7241379310344828, \"f1-score\": 0.7245441409718694, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7241379310344828, \"recall\": 0.7241379310344828, \"f1-score\": 0.7241379310344828, \"support\": 116.0}}", + "eval_f1_macro": 78.98120948514058, + "eval_f1_micro": 72.41379310344828, + "eval_f1_weighted": 72.45441409718694, + "eval_loss": 1.4562674760818481, + "eval_runtime": 3.5171, + "eval_samples_per_second": 32.982, + "step": 2784 + }, + { + "epoch": 175.0, + "learning_rate": 4.1666666666666665e-05, + "loss": 0.0046, + "step": 2800 + }, + { + "epoch": 175.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.180675699114, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.6451612903225806, \"f1-score\": 0.6557377049180327, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7712839974699557, \"recall\": 0.7954067979269592, \"f1-score\": 0.7789290650061459, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7281445614953435, \"recall\": 0.7155172413793104, \"f1-score\": 0.7172634801997937, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.89290650061459, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.72634801997937, + "eval_loss": 1.4793877601623535, + "eval_runtime": 3.4412, + "eval_samples_per_second": 33.709, + "step": 2800 + }, + { + "epoch": 176.0, + "learning_rate": 3.9999999999999996e-05, + "loss": 0.0027, + "step": 2816 + }, + { + "epoch": 176.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.180675699114, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.6451612903225806, \"f1-score\": 0.6557377049180327, \"support\": 31.0}, \"2\": {\"precision\": 0.5294117647058824, \"recall\": 0.75, \"f1-score\": 0.6206896551724139, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7712839974699557, \"recall\": 0.7954067979269592, \"f1-score\": 0.7789290650061459, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7281445614953435, \"recall\": 0.7155172413793104, \"f1-score\": 0.7172634801997937, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.89290650061459, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.72634801997937, + "eval_loss": 1.4750888347625732, + "eval_runtime": 3.4065, + "eval_samples_per_second": 34.053, + "step": 2816 + }, + { + "epoch": 177.0, + "learning_rate": 3.833333333333333e-05, + "loss": 0.0041, + "step": 2832 + }, + { + "epoch": 177.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.51589516696308, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7568327388163503, \"recall\": 0.7937266904000775, \"f1-score\": 0.7662243283001791, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7163489656100741, \"recall\": 0.6982758620689655, \"f1-score\": 0.6978597542404128, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.6224328300179, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.78597542404128, + "eval_loss": 1.4743212461471558, + "eval_runtime": 3.4805, + "eval_samples_per_second": 33.329, + "step": 2832 + }, + { + "epoch": 178.0, + "learning_rate": 3.666666666666666e-05, + "loss": 0.0029, + "step": 2848 + }, + { + "epoch": 178.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.53449956308395, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5555555555555556, \"recall\": 0.8333333333333334, \"f1-score\": 0.6666666666666667, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.757966701173223, \"recall\": 0.7937266904000775, \"f1-score\": 0.7677387914230019, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7129408510030699, \"recall\": 0.6982758620689655, \"f1-score\": 0.6970894669624254, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 76.77387914230019, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.70894669624253, + "eval_loss": 1.4721920490264893, + "eval_runtime": 3.6305, + "eval_samples_per_second": 31.951, + "step": 2848 + }, + { + "epoch": 179.0, + "learning_rate": 3.5e-05, + "loss": 0.0017, + "step": 2864 + }, + { + "epoch": 179.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.4166991166647, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7654607594025753, \"recall\": 0.8076155792889663, \"f1-score\": 0.7785070914834981, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7184375010737566, \"recall\": 0.7068965517241379, \"f1-score\": 0.704367769734814, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.85070914834981, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.4367769734814, + "eval_loss": 1.4708837270736694, + "eval_runtime": 3.5759, + "eval_samples_per_second": 32.44, + "step": 2864 + }, + { + "epoch": 180.0, + "learning_rate": 3.333333333333333e-05, + "loss": 0.0012, + "step": 2880 + }, + { + "epoch": 180.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.44511160346006, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.8333333333333334, \"f1-score\": 0.7142857142857143, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.76620670995671, \"recall\": 0.8076155792889663, \"f1-score\": 0.7801549327865117, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.714010486639797, \"recall\": 0.7068965517241379, \"f1-score\": 0.7038564279036149, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 78.01549327865118, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.38564279036149, + "eval_loss": 1.4706202745437622, + "eval_runtime": 3.5188, + "eval_samples_per_second": 32.966, + "step": 2880 + }, + { + "epoch": 181.0, + "learning_rate": 3.1666666666666666e-05, + "loss": 0.0053, + "step": 2896 + }, + { + "epoch": 181.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.55315570436197, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.5806451612903226, \"f1-score\": 0.6206896551724138, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.77245670995671, \"recall\": 0.8012311706868158, \"f1-score\": 0.7832879612825165, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.709340946409912, \"recall\": 0.7068965517241379, \"f1-score\": 0.7050451634436865, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 78.32879612825165, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.50451634436865, + "eval_loss": 1.465261697769165, + "eval_runtime": 3.5564, + "eval_samples_per_second": 32.617, + "step": 2896 + }, + { + "epoch": 182.0, + "learning_rate": 2.9999999999999997e-05, + "loss": 0.0038, + "step": 2912 + }, + { + "epoch": 182.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.40865874042373, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7641321301247772, \"recall\": 0.8076155792889663, \"f1-score\": 0.7782498239727094, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7166401591984757, \"recall\": 0.7068965517241379, \"f1-score\": 0.7043034221959642, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.82498239727093, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.43034221959643, + "eval_loss": 1.4806840419769287, + "eval_runtime": 3.7056, + "eval_samples_per_second": 31.304, + "step": 2912 + }, + { + "epoch": 183.0, + "learning_rate": 2.833333333333333e-05, + "loss": 0.0028, + "step": 2928 + }, + { + "epoch": 183.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.38962426166869, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5555555555555556, \"recall\": 0.8333333333333334, \"f1-score\": 0.6666666666666667, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7638968004856752, \"recall\": 0.8076155792889663, \"f1-score\": 0.776807237185295, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7214897564586691, \"recall\": 0.7068965517241379, \"f1-score\": 0.7049846298331768, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.68072371852949, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.49846298331768, + "eval_loss": 1.488191843032837, + "eval_runtime": 3.5904, + "eval_samples_per_second": 32.309, + "step": 2928 + }, + { + "epoch": 184.0, + "learning_rate": 2.6666666666666667e-05, + "loss": 0.0023, + "step": 2944 + }, + { + "epoch": 184.0, + "eval_accuracy": 71.55172413793103, + "eval_average_metrics": 73.15858959502073, + "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6486486486486487, \"f1-score\": 0.7058823529411764, \"support\": 37.0}, \"1\": {\"precision\": 0.72, \"recall\": 0.5806451612903226, \"f1-score\": 0.6428571428571428, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7663894248083551, \"recall\": 0.8116478373534826, \"f1-score\": 0.7795007561598494, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7351414250815632, \"recall\": 0.7155172413793104, \"f1-score\": 0.715808344882359, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7155172413793104, \"recall\": 0.7155172413793104, \"f1-score\": 0.7155172413793104, \"support\": 116.0}}", + "eval_f1_macro": 77.95007561598494, + "eval_f1_micro": 71.55172413793103, + "eval_f1_weighted": 71.5808344882359, + "eval_loss": 1.489672064781189, + "eval_runtime": 3.6032, + "eval_samples_per_second": 32.193, + "step": 2944 + }, + { + "epoch": 185.0, + "learning_rate": 2.4999999999999998e-05, + "loss": 0.0016, + "step": 2960 + }, + { + "epoch": 185.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.36915419300583, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7624670619235836, \"recall\": 0.8076155792889663, \"f1-score\": 0.774048383337571, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7298146381354778, \"recall\": 0.7068965517241379, \"f1-score\": 0.7069246809343867, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.4048383337571, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.69246809343866, + "eval_loss": 1.4815300703048706, + "eval_runtime": 3.5248, + "eval_samples_per_second": 32.91, + "step": 2960 + }, + { + "epoch": 186.0, + "learning_rate": 2.3333333333333332e-05, + "loss": 0.0017, + "step": 2976 + }, + { + "epoch": 186.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.37399750147833, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.762915626516885, \"recall\": 0.8076155792889663, \"f1-score\": 0.7753263086030489, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7252877448835391, \"recall\": 0.7068965517241379, \"f1-score\": 0.7058404880078084, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.53263086030489, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.58404880078083, + "eval_loss": 1.480554223060608, + "eval_runtime": 3.5425, + "eval_samples_per_second": 32.745, + "step": 2976 + }, + { + "epoch": 187.0, + "learning_rate": 2.1666666666666664e-05, + "loss": 0.0015, + "step": 2992 + }, + { + "epoch": 187.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.36915419300583, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7624670619235836, \"recall\": 0.8076155792889663, \"f1-score\": 0.774048383337571, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7298146381354778, \"recall\": 0.7068965517241379, \"f1-score\": 0.7069246809343867, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.4048383337571, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.69246809343866, + "eval_loss": 1.4873557090759277, + "eval_runtime": 3.5574, + "eval_samples_per_second": 32.608, + "step": 2992 + }, + { + "epoch": 188.0, + "learning_rate": 1.9999999999999998e-05, + "loss": 0.0008, + "step": 3008 + }, + { + "epoch": 188.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.36915419300583, + "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6486486486486487, \"f1-score\": 0.6956521739130435, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7624670619235836, \"recall\": 0.8076155792889663, \"f1-score\": 0.774048383337571, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7298146381354778, \"recall\": 0.7068965517241379, \"f1-score\": 0.7069246809343867, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.4048383337571, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.69246809343866, + "eval_loss": 1.491733193397522, + "eval_runtime": 3.4827, + "eval_samples_per_second": 33.307, + "step": 3008 + }, + { + "epoch": 189.0, + "learning_rate": 1.833333333333333e-05, + "loss": 0.0012, + "step": 3024 + }, + { + "epoch": 189.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.37399750147833, + "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.6486486486486487, \"f1-score\": 0.6857142857142857, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5263157894736842, \"recall\": 0.8333333333333334, \"f1-score\": 0.6451612903225806, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.762915626516885, \"recall\": 0.8076155792889663, \"f1-score\": 0.7753263086030489, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7252877448835391, \"recall\": 0.7068965517241379, \"f1-score\": 0.7058404880078084, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.53263086030489, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.58404880078083, + "eval_loss": 1.4866951704025269, + "eval_runtime": 3.6553, + "eval_samples_per_second": 31.735, + "step": 3024 + }, + { + "epoch": 190.0, + "learning_rate": 1.6666666666666664e-05, + "loss": 0.0012, + "step": 3040 + }, + { + "epoch": 190.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.4166991166647, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.7391304347826086, \"recall\": 0.5483870967741935, \"f1-score\": 0.6296296296296297, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7654607594025753, \"recall\": 0.8076155792889663, \"f1-score\": 0.7785070914834981, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7184375010737566, \"recall\": 0.7068965517241379, \"f1-score\": 0.704367769734814, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.85070914834981, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.4367769734814, + "eval_loss": 1.4795528650283813, + "eval_runtime": 3.8895, + "eval_samples_per_second": 29.824, + "step": 3040 + }, + { + "epoch": 191.0, + "learning_rate": 1.4999999999999999e-05, + "loss": 0.0016, + "step": 3056 + }, + { + "epoch": 191.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.44511160346006, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.8333333333333334, \"f1-score\": 0.7142857142857143, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.76620670995671, \"recall\": 0.8076155792889663, \"f1-score\": 0.7801549327865117, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.714010486639797, \"recall\": 0.7068965517241379, \"f1-score\": 0.7038564279036149, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 78.01549327865118, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.38564279036149, + "eval_loss": 1.4766614437103271, + "eval_runtime": 3.2914, + "eval_samples_per_second": 35.243, + "step": 3056 + }, + { + "epoch": 192.0, + "learning_rate": 1.3333333333333333e-05, + "loss": 0.0058, + "step": 3072 + }, + { + "epoch": 192.0, + "eval_accuracy": 69.82758620689656, + "eval_average_metrics": 71.63386645493044, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.68, \"recall\": 0.5483870967741935, \"f1-score\": 0.6071428571428571, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7595400432900433, \"recall\": 0.7971989126222997, \"f1-score\": 0.7728226817042606, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7038524406627855, \"recall\": 0.6982758620689655, \"f1-score\": 0.6959802523550256, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.6982758620689655, \"recall\": 0.6982758620689655, \"f1-score\": 0.6982758620689655, \"support\": 116.0}}", + "eval_f1_macro": 77.28226817042606, + "eval_f1_micro": 69.82758620689656, + "eval_f1_weighted": 69.59802523550256, + "eval_loss": 1.4715838432312012, + "eval_runtime": 3.7048, + "eval_samples_per_second": 31.311, + "step": 3072 + }, + { + "epoch": 193.0, + "learning_rate": 1.1666666666666666e-05, + "loss": 0.0009, + "step": 3088 + }, + { + "epoch": 193.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.47334392014518, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.6923076923076923, \"recall\": 0.5806451612903226, \"f1-score\": 0.631578947368421, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7677072927072928, \"recall\": 0.8012311706868158, \"f1-score\": 0.7800438596491228, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7112559853939164, \"recall\": 0.7068965517241379, \"f1-score\": 0.7050967937084089, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 78.00438596491229, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.5096793708409, + "eval_loss": 1.4735238552093506, + "eval_runtime": 3.3676, + "eval_samples_per_second": 34.446, + "step": 3088 + }, + { + "epoch": 194.0, + "learning_rate": 9.999999999999999e-06, + "loss": 0.0012, + "step": 3104 + }, + { + "epoch": 194.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.47334392014518, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.6923076923076923, \"recall\": 0.5806451612903226, \"f1-score\": 0.631578947368421, \"support\": 31.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7677072927072928, \"recall\": 0.8012311706868158, \"f1-score\": 0.7800438596491228, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7112559853939164, \"recall\": 0.7068965517241379, \"f1-score\": 0.7050967937084089, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 78.00438596491229, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.5096793708409, + "eval_loss": 1.4754087924957275, + "eval_runtime": 3.4262, + "eval_samples_per_second": 33.856, + "step": 3104 + }, + { + "epoch": 195.0, + "learning_rate": 8.333333333333332e-06, + "loss": 0.0045, + "step": 3120 + }, + { + "epoch": 195.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.44511160346006, + "eval_classification_report": "{\"0\": {\"precision\": 0.6857142857142857, \"recall\": 0.6486486486486487, \"f1-score\": 0.6666666666666667, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.8333333333333334, \"f1-score\": 0.7142857142857143, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.76620670995671, \"recall\": 0.8076155792889663, \"f1-score\": 0.7801549327865117, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.714010486639797, \"recall\": 0.7068965517241379, \"f1-score\": 0.7038564279036149, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 78.01549327865118, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.38564279036149, + "eval_loss": 1.477858304977417, + "eval_runtime": 3.454, + "eval_samples_per_second": 33.585, + "step": 3120 + }, + { + "epoch": 196.0, + "learning_rate": 6.666666666666667e-06, + "loss": 0.002, + "step": 3136 + }, + { + "epoch": 196.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.40865874042373, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7641321301247772, \"recall\": 0.8076155792889663, \"f1-score\": 0.7782498239727094, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7166401591984757, \"recall\": 0.7068965517241379, \"f1-score\": 0.7043034221959642, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.82498239727093, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.43034221959643, + "eval_loss": 1.4776675701141357, + "eval_runtime": 3.8626, + "eval_samples_per_second": 30.031, + "step": 3136 + }, + { + "epoch": 197.0, + "learning_rate": 4.9999999999999996e-06, + "loss": 0.0008, + "step": 3152 + }, + { + "epoch": 197.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.40865874042373, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7641321301247772, \"recall\": 0.8076155792889663, \"f1-score\": 0.7782498239727094, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7166401591984757, \"recall\": 0.7068965517241379, \"f1-score\": 0.7043034221959642, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.82498239727093, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.43034221959643, + "eval_loss": 1.474848985671997, + "eval_runtime": 3.7868, + "eval_samples_per_second": 30.633, + "step": 3152 + }, + { + "epoch": 198.0, + "learning_rate": 3.3333333333333333e-06, + "loss": 0.0004, + "step": 3168 + }, + { + "epoch": 198.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.40865874042373, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7641321301247772, \"recall\": 0.8076155792889663, \"f1-score\": 0.7782498239727094, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7166401591984757, \"recall\": 0.7068965517241379, \"f1-score\": 0.7043034221959642, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.82498239727093, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.43034221959643, + "eval_loss": 1.4734230041503906, + "eval_runtime": 3.5757, + "eval_samples_per_second": 32.442, + "step": 3168 + }, + { + "epoch": 199.0, + "learning_rate": 1.6666666666666667e-06, + "loss": 0.0026, + "step": 3184 + }, + { + "epoch": 199.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.40865874042373, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7641321301247772, \"recall\": 0.8076155792889663, \"f1-score\": 0.7782498239727094, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7166401591984757, \"recall\": 0.7068965517241379, \"f1-score\": 0.7043034221959642, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.82498239727093, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.43034221959643, + "eval_loss": 1.4729118347167969, + "eval_runtime": 3.4795, + "eval_samples_per_second": 33.338, + "step": 3184 + }, + { + "epoch": 200.0, + "learning_rate": 0.0, + "loss": 0.0018, + "step": 3200 + }, + { + "epoch": 200.0, + "eval_accuracy": 70.6896551724138, + "eval_average_metrics": 72.40865874042373, + "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6486486486486487, \"f1-score\": 0.676056338028169, \"support\": 37.0}, \"1\": {\"precision\": 0.7083333333333334, \"recall\": 0.5483870967741935, \"f1-score\": 0.6181818181818182, \"support\": 31.0}, \"2\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.7641321301247772, \"recall\": 0.8076155792889663, \"f1-score\": 0.7782498239727094, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.7166401591984757, \"recall\": 0.7068965517241379, \"f1-score\": 0.7043034221959642, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7068965517241379, \"recall\": 0.7068965517241379, \"f1-score\": 0.7068965517241379, \"support\": 116.0}}", + "eval_f1_macro": 77.82498239727093, + "eval_f1_micro": 70.6896551724138, + "eval_f1_weighted": 70.43034221959643, + "eval_loss": 1.4728341102600098, + "eval_runtime": 3.5177, + "eval_samples_per_second": 32.976, + "step": 3200 + }, + { + "epoch": 200.0, + "step": 3200, + "total_flos": 1.5687593349873664e+16, + "train_runtime": 2875.9944, + "train_samples_per_second": 1.113 + } + ], + "max_steps": 3200, + "num_train_epochs": 200, + "total_flos": 1.5687593349873664e+16, + "trial_name": null, + "trial_params": null +}