Commit
·
b9963e2
1
Parent(s):
6bcf8c8
inference pipeline
Browse files
README.md
CHANGED
@@ -8,4 +8,40 @@ metrics:
|
|
8 |
- accuracy
|
9 |
- f1
|
10 |
pipeline_tag: image-classification
|
11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
- accuracy
|
9 |
- f1
|
10 |
pipeline_tag: image-classification
|
11 |
+
---
|
12 |
+
|
13 |
+
Image Classification
|
14 |
+
|
15 |
+
This project is about an image classification task of artificial and natural classes.
|
16 |
+
|
17 |
+
Setup:
|
18 |
+
|
19 |
+
pip install -r requirements.txt
|
20 |
+
|
21 |
+
|
22 |
+
Inference:
|
23 |
+
|
24 |
+
|
25 |
+
from torchvision import transforms
|
26 |
+
import torch
|
27 |
+
inference_transform = transforms.Compose([
|
28 |
+
transforms.Resize(128),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
|
31 |
+
std=[0.2023, 0.1994, 0.2010]),
|
32 |
+
])
|
33 |
+
|
34 |
+
#load image and model
|
35 |
+
img_example = Image.open("image_example.png").convert('RGB')
|
36 |
+
print("image loaded!")
|
37 |
+
model_loaded = torch.load("fatima_challenge_model_exp3.pt")
|
38 |
+
model_loaded.eval()
|
39 |
+
print("model loaded!")
|
40 |
+
|
41 |
+
|
42 |
+
img_example_transformed = inference_transform(img_example)
|
43 |
+
out = model_loaded(img_example_transformed.to(torch.device("cuda:0")).unsqueeze(0)) # Generate predictions
|
44 |
+
_, outs = torch.max(out, 1)
|
45 |
+
prediction = "natural" if int(outs.cpu().numpy())==0 else "artificial"
|
46 |
+
print("prediction = ",prediction)
|
47 |
+
|