0624 ppo 1,000,000 steps
Browse files- README.md +15 -39
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +16 -16
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +2 -2
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-course
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
@@ -17,45 +16,22 @@ model-index:
|
|
17 |
type: LunarLander-v2
|
18 |
metrics:
|
19 |
- type: mean_reward
|
20 |
-
value:
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
'wandb_project_name': 'cleanRL'
|
37 |
-
'wandb_entity': None
|
38 |
-
'capture_video': False
|
39 |
-
'env_id': 'LunarLander-v2'
|
40 |
-
'total_timesteps': 50000
|
41 |
-
'learning_rate': 0.00025
|
42 |
-
'num_envs': 4
|
43 |
-
'num_steps': 128
|
44 |
-
'anneal_lr': True
|
45 |
-
'gae': True
|
46 |
-
'gamma': 0.99
|
47 |
-
'gae_lambda': 0.95
|
48 |
-
'num_minibatches': 4
|
49 |
-
'update_epochs': 4
|
50 |
-
'norm_adv': True
|
51 |
-
'clip_coef': 0.2
|
52 |
-
'clip_vloss': True
|
53 |
-
'ent_coef': 0.01
|
54 |
-
'vf_coef': 0.5
|
55 |
-
'max_grad_norm': 0.5
|
56 |
-
'target_kl': None
|
57 |
-
'repo_id': 'Croolch/ppo-LunarLander-v2'
|
58 |
-
'batch_size': 512
|
59 |
-
'minibatch_size': 128}
|
60 |
-
```
|
61 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 226.23 +/- 77.63
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79c2f0036320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c2f00363b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c2f0036440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c2f00364d0>", "_build": "<function ActorCriticPolicy._build at 0x79c2f0036560>", "forward": "<function ActorCriticPolicy.forward at 0x79c2f00365f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79c2f0036680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c2f0036710>", "_predict": "<function ActorCriticPolicy._predict at 0x79c2f00367a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c2f0036830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c2f00368c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79c2f0036950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c2effdbdc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709450343226283939, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC1bbD4TuC8/TOwOPu0iAb9oMxU+iGADvgAAAAAAAAAAvfyhPuEMmD6/M4W9hzOFvn+8xDygr0C9AAAAAAAAAAATOQO+S9LYPqBK67xvULy+g+EnvePW8jwAAAAAAAAAAO2RLr7+1z0/9Z28vXf/Gb/w/2u928OnPQAAAAAAAAAAmq9avcNJLrq4UC+zPPzwr1c40Dq+aM8zAACAPwAAgD/Nh2o+lx0mvc0oWb5f2Yq+c1qVvjP3Tr8AAIA/AACAP0Akpz3U8Lg/5bvtPgoq/b00jts8wv+zPQAAAAAAAAAAAA/HPKBBmT+bJd89pl4ovychqzyyzjo9AAAAAAAAAACNaLW9Vq9WPV/URT3Jjye+C28DO9pxiz0AAAAAAAAAAGa53L2FoPu7xmDSPaHLar2ZkF+9g89FvgAAgD8AAIA/M/6mPQykRj7eLze9ZVhIvg+wMjwaYma8AAAAAAAAAACNX7S9jzGqP3ab7r6+ldu+AU7GveX1j70AAAAAAAAAAEZFjD5PA2E9gDLSvY58u71blBW8Uw8sPQAAAAAAAAAAxvMmPikcIT1hEz09sQYivtGQFj33XI48AAAAAAAAAADNfDq+9j4HvP2M1rpRIUw7EoVSPV1QVbwAAIA/AACAP2C7hD7Azug+NiK/vZmSvr50oWI9g0/RvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8zuafBeomMAWyUTQIBjAF0lEdAniKEoScslXV9lChoBkdAcT3LKmsNlWgHS8xoCEdAniKxhttQ9HV9lChoBkdAchMChew9q2gHTS0BaAhHQJ4ivH0btJF1fZQoaAZHQHHUmr0aqCJoB00FAWgIR0CeJdFoL5RCdX2UKGgGR0BxsfQUpNKzaAdL3WgIR0CeJkA2AG0NdX2UKGgGR0BwnO7g88s+aAdNEwFoCEdAniZAu7HyVnV9lChoBkfAHXc94eLeh2gHS5ZoCEdAnia5QLux8nV9lChoBkdAKLWAXl8w6GgHS8hoCEdAnicj9S/CZXV9lChoBkdAbIL0g8r7O2gHS+doCEdAnidJGrjo6nV9lChoBkdAOADHjp9qlGgHS61oCEdAnidA3gk1M3V9lChoBkc/+Ai+tbLU1GgHS8VoCEdAnidqXSjQA3V9lChoBkdAbs8ir1dxAGgHS+RoCEdAnijx1HOKO3V9lChoBkdAcdDrCFbml2gHS+xoCEdAni1vYWcjJXV9lChoBkdAZuGfywwCbWgHTfYBaAhHQJ4tdeJHiFV1fZQoaAZHwCV9sabWmP5oB0uFaAhHQJ4tut6ol2N1fZQoaAZHQG9aVyeZof1oB0vnaAhHQJ4tyZML4N91fZQoaAZHQHFV1GG21D1oB0vNaAhHQJ4uEjzI3it1fZQoaAZHQG/1H/cWTHNoB0vdaAhHQJ4ug1aW5Yp1fZQoaAZHQF7Bd9Dx9XtoB03oA2gIR0CeLoSuyNXHdX2UKGgGR0BwNSA4GUwBaAdL+2gIR0CeLxuscQyzdX2UKGgGR0BwFDAwfyPNaAdNCgFoCEdAnjBhFiKBNHV9lChoBkdAcDi0ZWJaaGgHTR8BaAhHQJ4w5FtsN2F1fZQoaAZHQEpM8wHqu8toB0uyaAhHQJ40jvCuU2V1fZQoaAZHwCdlvES/TLJoB0uhaAhHQJ41GpLmITJ1fZQoaAZHP/JFhoduHetoB0vZaAhHQJ4246BAfMh1fZQoaAZHQG808jRlYlpoB0v3aAhHQJ45wz1schl1fZQoaAZHQF8wF6zE74loB03oA2gIR0CeOfD6Fds0dX2UKGgGR0BwAn4xk/bCaAdNEQFoCEdAnjoYB3iaRnV9lChoBkdAcQ/erdWQwWgHTR8BaAhHQJ464bDMvAZ1fZQoaAZHQHBQ+4Cp3otoB0vyaAhHQJ47sr+YMOR1fZQoaAZHQDBPhUBGQS1oB0uhaAhHQJ48kfq5byJ1fZQoaAZHQGyOlyJbdJtoB00aAWgIR0CePbCJXQt0dX2UKGgGR0BwgSX/o7muaAdL9mgIR0CeP0rxiG34dX2UKGgGR0A4N8gpz90jaAdLpmgIR0CeP/RCQcPwdX2UKGgGR0BwMwYVIqb0aAdL82gIR0CeQPUqQRwqdX2UKGgGR0BhVBuwX668aAdN6ANoCEdAnkEAljVhC3V9lChoBkdAcRaxZMcp9mgHS8doCEdAnkMfluFYdXV9lChoBkdAbpPdoFmnO2gHS91oCEdAnkMfzasZHnV9lChoBkdAb+OGRFI/aGgHTQUBaAhHQJ5DulBQemx1fZQoaAZHQG9bBSUC7shoB00EAWgIR0CeQ9J9iMHbdX2UKGgGR0BvsC83++/QaAdL52gIR0CeRUGbCrLhdX2UKGgGR0Bs+dvZRKpUaAdL2mgIR0CeRetNBWxRdX2UKGgGR0Blt9jqfOD8aAdN6ANoCEdAnkYTJlrdnHV9lChoBkdAYSxOsT37DWgHTegDaAhHQJ5HAcLjPv91fZQoaAZHQFylSg5BC2NoB03oA2gIR0CeRynUDuBudX2UKGgGR0Bx+eTFERapaAdL2mgIR0CeR1UxEfDDdX2UKGgGR0Bu+LBGhEjPaAdL5WgIR0CeSCfw7T2GdX2UKGgGR0BubmB6KLsKaAdL1GgIR0CeSG/zJ6ppdX2UKGgGR0BuXLz7MxGlaAdL3GgIR0CeSKFnqVyFdX2UKGgGR0BBhJfhMrVfaAdLgWgIR0CeSfFSsKb8dX2UKGgGR0BvLBG2CuloaAdL42gIR0CeSobG3nZCdX2UKGgGR0Bv9tM/QjUvaAdL6WgIR0CeSrT1kDp1dX2UKGgGR0BwWJx//echaAdL3WgIR0CeSszundftdX2UKGgGR0Arxqnm7rcCaAdLg2gIR0CeSwFEiMYNdX2UKGgGR0BqLbLOiWVvaAdN6ANoCEdAnktJ4nndPHV9lChoBkdAMeOj/MnqmmgHS8xoCEdAnkv9tuUD+3V9lChoBkdAcLi6mfoRqWgHS9ZoCEdAnk2K8pTdcnV9lChoBkdAbblo+OfdymgHTRMBaAhHQJ5NieiBXjl1fZQoaAZHQHC3CVnmJWNoB0vDaAhHQJ5OGycCo0h1fZQoaAZHQG3Bc8La24NoB0vXaAhHQJ5OZtqHoHN1fZQoaAZHQHBhlPnB+F1oB0vdaAhHQJ5PEAR02cd1fZQoaAZHQG6yfUvwmVtoB00wAWgIR0CeT+r8BMi9dX2UKGgGR0BxO1jz7MxHaAdL1mgIR0CeUDwGW2PUdX2UKGgGR0BwKt9iMHbAaAdL5GgIR0CeUX3xnWaudX2UKGgGR0BwdfmzSkTIaAdL8WgIR0CeUZ3iJfpmdX2UKGgGR0Bg0eBlMAWBaAdN6ANoCEdAnlHdelbeM3V9lChoBkdAItyu6mO2iWgHS95oCEdAnlKWDlHSW3V9lChoBkdAbNlIkJKJ22gHTR0BaAhHQJ5TGNfgJkZ1fZQoaAZHQGD9JcPe54JoB03oA2gIR0CeUyrNW2gGdX2UKGgGR0BwZ9f+jua4aAdNJAFoCEdAnlOOT7l7t3V9lChoBkdAcCrsU7CBPWgHS9poCEdAnlP6VY6nznV9lChoBkdAbSq9PDYRNGgHS+hoCEdAnlRatozvZ3V9lChoBkfAM3QE+xGDtmgHS9NoCEdAnlSPUjLSu3V9lChoBkdAcc1tMfzSTmgHS+NoCEdAnlSzaoMrmXV9lChoBkdAconCsOoYN2gHS91oCEdAnlVanrIHT3V9lChoBkdAQxYh2W6bv2gHS6RoCEdAnlYJFgDzRXV9lChoBkdAbcC0qH4462gHS+doCEdAnlaWNNrTIHV9lChoBkdAbH622oegc2gHS9xoCEdAnldvtY0VJ3V9lChoBkdAcACkEs8PnWgHTScBaAhHQJ5YG2AoXsR1fZQoaAZHQG5UA7PppvhoB0vmaAhHQJ5Y2ZCv5gx1fZQoaAZHQG2EcejmCAdoB0vkaAhHQJ5ZYabWmP51fZQoaAZHQHA71pfx+a1oB0vsaAhHQJ5ZkSCe2/l1fZQoaAZHQGk0BG6PKdRoB0vraAhHQJ5aESHuZ1F1fZQoaAZHQDo69Htnf2toB0unaAhHQJ5aILpiZv11fZQoaAZHQHCkEDQqqfhoB005AWgIR0CeWqSQHRkVdX2UKGgGR0BvmN90A93baAdL6WgIR0CeWxrO7g89dX2UKGgGR0BwlXHYHxBmaAdNBwFoCEdAnlvLWRRuTHV9lChoBkdAcWcPJq7AcmgHS8poCEdAnlv8URFqjHV9lChoBkdAb5soVEd/8WgHTSkBaAhHQJ5cX+vQnhN1fZQoaAZHQHB3Gpda+vhoB00SAWgIR0CeXH+VC5VfdX2UKGgGR0BueHi97F85aAdNbgJoCEdAnl0MRxtHhHV9lChoBkdAb9eAd4mkWWgHS/ZoCEdAnl2gOBlMAXV9lChoBkdAcABQ40dilWgHS+RoCEdAnl382rGR3nV9lChoBkfAHZQNCqp97WgHS59oCEdAnl51r6+FlHV9lChoBkdAO8uPNmlImWgHS8poCEdAnl8Cx3V093V9lChoBkdAcWrfOUt7KWgHS95oCEdAnl8WkFfReHV9lChoBkdAbmYbwSamXWgHS/poCEdAnl8rpV0cO3V9lChoBkdAYhJpqREF4mgHTegDaAhHQJ5g1d7fHgh1fZQoaAZHQG5L13dKujhoB00HAWgIR0CeYNPk7wKCdX2UKGgGR0BwF07OmixnaAdL52gIR0CeYOjQzDXOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7be0ff2eba30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be0ff2ebac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be0ff2ebb50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be0ff2ebbe0>", "_build": "<function ActorCriticPolicy._build at 0x7be0ff2ebc70>", "forward": "<function ActorCriticPolicy.forward at 0x7be0ff2ebd00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be0ff2ebd90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be0ff2ebe20>", "_predict": "<function ActorCriticPolicy._predict at 0x7be0ff2ebeb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be0ff2ebf40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be0ff2f4040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be0ff2f40d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be100454040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719236364384521618, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPeHr4ZAk0+lVlKPrxpXr5YVJU9lEmDvQAAAAAAAAAAZuwGvQpJNLsBNB28nZwBPF0YeDw7R+m8AACAPwAAgD/mz2q9XJwYvKGmOL3RKAq9RddyPYpG5z0AAIA/AACAPyZxzb2fscu7o/fkvX6qFb7iVRw9xQVZPgAAAAAAAIA/TVYZvg+uPLwFQzy7wHnAufqHnj0yaKQ6AACAPwAAgD9z0hy+DzdivG3LTzrFhoM4IZnIPXaki7kAAIA/AACAP9b5Vr6kIfE+KumEPLBlh77mqKC99sgAPQAAAAAAAAAAjSe+vSlsVrpeqo05pwLhNDu49ToYcqK4AACAPwAAAAA+foS+QmB0PiJMFz7HXXq+ipj0uzBAn7sAAAAAAAAAAHPWJb749Jk8amMHPtaBQ753fE2+ooMovwAAgD8AAAAApkJpvrCxjT5rQQy8M0NNvl2TXr3+whq8AAAAAAAAAAAANNe9j+Z6ut4h77Rd5D+wE/oWuk0QUjQAAIA/AAAAAOaOW71B5aM/SluZvt53/L6v2SK9hn1UvQAAAAAAAAAAs+tmvYmoLj8aUV29nCIEv8ZHTrwpWQ29AAAAAAAAAAA9HIw+fvr1PVWwab5SUCW+OLQwO7zxRbwAAAAAAAAAAAD5Hr5PNXK8qNiKtmD5hDeqD9s9/qsEtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWVOZssQNGMAWyUTegDjAF0lEdAmI1LL2YfGXV9lChoBkdAcFbJZ4fOlmgHS/5oCEdAmI10CzTnaHV9lChoBkdAcrXedkJ8fGgHTQIBaAhHQJiNnhhpg1F1fZQoaAZHQHBoTxLCemNoB0vXaAhHQJiOGfpUxVR1fZQoaAZHQHDF9nTRYzVoB0vLaAhHQJiP1Cw8nu11fZQoaAZHQG0mX7UG3WpoB0vpaAhHQJiQSp3os7N1fZQoaAZHQHGZ0JrtVrBoB0voaAhHQJiQY2ycCo11fZQoaAZHQHE8vigkC3hoB0vRaAhHQJiRXzreImB1fZQoaAZHQHICBpxm03RoB00iAWgIR0CYkku/k/8mdX2UKGgGR0BwAXI8yN4raAdL/WgIR0CYksrdFfAsdX2UKGgGR0BxaAUdq+JxaAdNLQFoCEdAmJLxqj8DS3V9lChoBkdAcW99YwIt2GgHS/RoCEdAmJMsd1dPcnV9lChoBkdAb3O+ajN6gWgHS+JoCEdAmJNvNNahYnV9lChoBkdAcRfWq94/vGgHS9BoCEdAmJPmfbsWwnV9lChoBkdAR95hH9WIXWgHS/BoCEdAmJP5OBUaQ3V9lChoBkdAcGZKBNEgGWgHS+xoCEdAmJQQWWQfZHV9lChoBkdAcH7QxvegtmgHTTECaAhHQJiUf5ZbILh1fZQoaAZHQG92Jk5IYm9oB0vtaAhHQJiWbuRcNYt1fZQoaAZHQHKGxKpT/AFoB0v0aAhHQJiXJfeDWbx1fZQoaAZHQHK3A4bS7XhoB00LAWgIR0CYl+zbvgFYdX2UKGgGR0BleKQmu1WsaAdN6ANoCEdAmJjB/qgRLHV9lChoBkdAcQ0J4SpR42gHS9loCEdAmJjzIRywOnV9lChoBkdAcLqVHFxXGWgHS/NoCEdAmJnojW07bXV9lChoBkdAcKTYEGJN02gHS91oCEdAmJpS9EkSmXV9lChoBkdActwM1jy4F2gHTSgBaAhHQJibADlo11p1fZQoaAZHQHD68cdYGMZoB0vgaAhHQJibNEx7AtZ1fZQoaAZHQFJ98B+4LCxoB00AAWgIR0CYm4sDGLk0dX2UKGgGR0BuqVuFYdQwaAdNXgFoCEdAmJu4MBp5/3V9lChoBkdAcY8nw5NoJ2gHTQwBaAhHQJicAYVIqb11fZQoaAZHQHGzWCAc1fpoB0vyaAhHQJieG7lJYkp1fZQoaAZHQHEfZIczZYhoB0vJaAhHQJieZ3wCr951fZQoaAZHQHDaYgieNDNoB00BAWgIR0CYn2NtqHoHdX2UKGgGR0BxQd2A5JbuaAdL3mgIR0CYn/ois4kvdX2UKGgGR0BwJ5hDw6QvaAdNAQFoCEdAmKF0vkBCD3V9lChoBkdARJsx9G7SRmgHS+VoCEdAmKLO/Yao/HV9lChoBkdAcVsigTRIBmgHS9toCEdAmKMVgUlAvHV9lChoBkdAbkjWmP5pJ2gHS+BoCEdAmKPdQGfPHHV9lChoBkdAcFaJVKf4AWgHS/xoCEdAmKPpJ5E+gXV9lChoBkdAcVyCkoF3ZGgHTUUBaAhHQJilFlI3BHl1fZQoaAZHQHGWZzkp7TloB00wAWgIR0CYpl7+1jRVdX2UKGgGR0BxNiUyHmA9aAdL8mgIR0CYpsl9BrvcdX2UKGgGR0BxOz73wkPdaAdL1WgIR0CYpyKyfL9udX2UKGgGR0BhBwCdSVGDaAdN6ANoCEdAmKeu7pV0cXV9lChoBkdAcNwV6/qPfmgHS+NoCEdAmKg5lnRLK3V9lChoBkdAcGFwSJ0nxGgHTTABaAhHQJipVq59Vm11fZQoaAZHQHBCbhBJI2BoB0vgaAhHQJirKq2jO9p1fZQoaAZHQHFN8LWqcVhoB00VAWgIR0CYq47fYSQHdX2UKGgGR0BiL5VbRne0aAdN6ANoCEdAmKwLX+VC5XV9lChoBkdAcPi9JSR8t2gHTRYBaAhHQJis00ygwoN1fZQoaAZHQHHb/mT1TR9oB00HAWgIR0CYrU1aW5YpdX2UKGgGR0BxcPaXa8HwaAdNEAFoCEdAmK2N65XlsHV9lChoBkdAbRomIj4YamgHTQcBaAhHQJiuZUkv9Lp1fZQoaAZHQHJ2I/JNj9ZoB0vJaAhHQJiuqVQhwER1fZQoaAZHQHAMbONYKY1oB0vtaAhHQJivVp/PPcB1fZQoaAZHQHDSPh/Aj6hoB0v8aAhHQJivh6w+t8x1fZQoaAZHQHBuhBZ6lchoB0v7aAhHQJiwv9pAUtZ1fZQoaAZHQHEhMPJ7sv9oB00LAWgIR0CYskhXKbKBdX2UKGgGR0Bsf5KODJ2daAdL7GgIR0CYsvgpjMFEdX2UKGgGR0BbB45cTrVwaAdN6ANoCEdAmLRMbBGhEnV9lChoBkdAcRa50bLlm2gHS+hoCEdAmLSo9gWrO3V9lChoBkdAZO66aLGaQWgHTegDaAhHQJi0wTewcHZ1fZQoaAZHQHJXNA5aNdZoB00HAWgIR0CYtP+JP69CdX2UKGgGR0Bys0waisXBaAdNFQFoCEdAmLUAo1DSgHV9lChoBkdAbsZ2B8QZoGgHS9poCEdAmLX9IsiB5HV9lChoBkdAcnkX3xnWa2gHS+FoCEdAmLdl8gIQe3V9lChoBkdAbP3YwIt16mgHS+hoCEdAmLfisCDEnHV9lChoBkdAcJ7jYqXnhmgHTTwBaAhHQJi4cNTcZcd1fZQoaAZHQHBeJckdFORoB0vaaAhHQJi65dZ7ojh1fZQoaAZHQHI0ERBeHBVoB00TAWgIR0CYu2PaL4vfdX2UKGgGR0BxRVyJbdJraAdL0mgIR0CYu3KMvRJFdX2UKGgGR0BwEJt0mtyQaAdNTwJoCEdAmLwDQNTcZnV9lChoBkdAcKOlOoHcDmgHS8VoCEdAmLzUs4DLbHV9lChoBkdAb3YDf3vhImgHS+ZoCEdAmL3t5le4TnV9lChoBkdAbnUZ88cMmWgHS9toCEdAmL4bIgeRxXV9lChoBkdAYS5ygf2bomgHTegDaAhHQJi+uq+8Gs51fZQoaAZHQHH1tbor4FloB00AAWgIR0CYwGP6sQumdX2UKGgGR0BwAY0/GEPEaAdNLQFoCEdAmMDPjsD4g3V9lChoBkdAcQda9sabWmgHTR0BaAhHQJjC5Y9xIat1fZQoaAZHwD5OquKXOW1oB0vDaAhHQJjDGMPz4Dd1fZQoaAZHQHKTlzQu27ZoB00VAWgIR0CYwyRTS9dvdX2UKGgGR0Bv3f18LKFJaAdL7WgIR0CYw7aWHDaXdX2UKGgGR0BwxwgLZzxPaAdL62gIR0CYw/+pwS8KdX2UKGgGR0BwnoevIOpbaAdL72gIR0CYxCuUUwi8dX2UKGgGR0Bw1Do/zJ6qaAdL4WgIR0CYxKlu3trsdX2UKGgGR0BxLoigTRICaAdNbwFoCEdAmMUjTa0x/XV9lChoBkdAbrlE/B3zMGgHS+JoCEdAmMV6MBIWg3V9lChoBkdAcDnrmyPdVWgHS/VoCEdAmMYjNdJJ5HV9lChoBkdAcuZ8wYcebWgHTREBaAhHQJjHX8ejmCB1fZQoaAZHQG7/gLRa5gBoB0vnaAhHQJjHmV/tpmF1fZQoaAZHQG5oT0Yj0MBoB0veaAhHQJjKGwNb1RN1fZQoaAZHQHGo84tHxz9oB003AWgIR0CYysaSLZSOdX2UKGgGR0BwEWKP4mCzaAdL92gIR0CYytBRAKOUdX2UKGgGR0BxrrBnBciXaAdL/2gIR0CYy0qslsxgdX2UKGgGR0Bx+Xq/ub7TaAdL6WgIR0CYy5UcXFcZdX2UKGgGR0A9s06HTI/8aAdL4mgIR0CYy9wQ176YdX2UKGgGR0Bwg+/fwZwXaAdL2mgIR0CYzBsmv4dqdX2UKGgGR0BwKpsl9jPOaAdL6WgIR0CYzPbVSXMRdX2UKGgGR0BwIfFdcB2faAdL8GgIR0CYzexusLfDdX2UKGgGR0BxZsWFev6kaAdL42gIR0CYzuu/1xsEdX2UKGgGR0Bko29+PRzBaAdN6ANoCEdAmNCk8A7xNXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3df366352cf5fbef7e84641bfbcb9f6fbd9e44073e86348d39c3fdb70b09107d
|
3 |
+
size 148007
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7be0ff2eba30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be0ff2ebac0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be0ff2ebb50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be0ff2ebbe0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7be0ff2ebc70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7be0ff2ebd00>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7be0ff2ebd90>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be0ff2ebe20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7be0ff2ebeb0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be0ff2ebf40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be0ff2f4040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7be0ff2f40d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7be100454040>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1719236364384521618,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPeHr4ZAk0+lVlKPrxpXr5YVJU9lEmDvQAAAAAAAAAAZuwGvQpJNLsBNB28nZwBPF0YeDw7R+m8AACAPwAAgD/mz2q9XJwYvKGmOL3RKAq9RddyPYpG5z0AAIA/AACAPyZxzb2fscu7o/fkvX6qFb7iVRw9xQVZPgAAAAAAAIA/TVYZvg+uPLwFQzy7wHnAufqHnj0yaKQ6AACAPwAAgD9z0hy+DzdivG3LTzrFhoM4IZnIPXaki7kAAIA/AACAP9b5Vr6kIfE+KumEPLBlh77mqKC99sgAPQAAAAAAAAAAjSe+vSlsVrpeqo05pwLhNDu49ToYcqK4AACAPwAAAAA+foS+QmB0PiJMFz7HXXq+ipj0uzBAn7sAAAAAAAAAAHPWJb749Jk8amMHPtaBQ753fE2+ooMovwAAgD8AAAAApkJpvrCxjT5rQQy8M0NNvl2TXr3+whq8AAAAAAAAAAAANNe9j+Z6ut4h77Rd5D+wE/oWuk0QUjQAAIA/AAAAAOaOW71B5aM/SluZvt53/L6v2SK9hn1UvQAAAAAAAAAAs+tmvYmoLj8aUV29nCIEv8ZHTrwpWQ29AAAAAAAAAAA9HIw+fvr1PVWwab5SUCW+OLQwO7zxRbwAAAAAAAAAAAD5Hr5PNXK8qNiKtmD5hDeqD9s9/qsEtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWVOZssQNGMAWyUTegDjAF0lEdAmI1LL2YfGXV9lChoBkdAcFbJZ4fOlmgHS/5oCEdAmI10CzTnaHV9lChoBkdAcrXedkJ8fGgHTQIBaAhHQJiNnhhpg1F1fZQoaAZHQHBoTxLCemNoB0vXaAhHQJiOGfpUxVR1fZQoaAZHQHDF9nTRYzVoB0vLaAhHQJiP1Cw8nu11fZQoaAZHQG0mX7UG3WpoB0vpaAhHQJiQSp3os7N1fZQoaAZHQHGZ0JrtVrBoB0voaAhHQJiQY2ycCo11fZQoaAZHQHE8vigkC3hoB0vRaAhHQJiRXzreImB1fZQoaAZHQHICBpxm03RoB00iAWgIR0CYkku/k/8mdX2UKGgGR0BwAXI8yN4raAdL/WgIR0CYksrdFfAsdX2UKGgGR0BxaAUdq+JxaAdNLQFoCEdAmJLxqj8DS3V9lChoBkdAcW99YwIt2GgHS/RoCEdAmJMsd1dPcnV9lChoBkdAb3O+ajN6gWgHS+JoCEdAmJNvNNahYnV9lChoBkdAcRfWq94/vGgHS9BoCEdAmJPmfbsWwnV9lChoBkdAR95hH9WIXWgHS/BoCEdAmJP5OBUaQ3V9lChoBkdAcGZKBNEgGWgHS+xoCEdAmJQQWWQfZHV9lChoBkdAcH7QxvegtmgHTTECaAhHQJiUf5ZbILh1fZQoaAZHQG92Jk5IYm9oB0vtaAhHQJiWbuRcNYt1fZQoaAZHQHKGxKpT/AFoB0v0aAhHQJiXJfeDWbx1fZQoaAZHQHK3A4bS7XhoB00LAWgIR0CYl+zbvgFYdX2UKGgGR0BleKQmu1WsaAdN6ANoCEdAmJjB/qgRLHV9lChoBkdAcQ0J4SpR42gHS9loCEdAmJjzIRywOnV9lChoBkdAcLqVHFxXGWgHS/NoCEdAmJnojW07bXV9lChoBkdAcKTYEGJN02gHS91oCEdAmJpS9EkSmXV9lChoBkdActwM1jy4F2gHTSgBaAhHQJibADlo11p1fZQoaAZHQHD68cdYGMZoB0vgaAhHQJibNEx7AtZ1fZQoaAZHQFJ98B+4LCxoB00AAWgIR0CYm4sDGLk0dX2UKGgGR0BuqVuFYdQwaAdNXgFoCEdAmJu4MBp5/3V9lChoBkdAcY8nw5NoJ2gHTQwBaAhHQJicAYVIqb11fZQoaAZHQHGzWCAc1fpoB0vyaAhHQJieG7lJYkp1fZQoaAZHQHEfZIczZYhoB0vJaAhHQJieZ3wCr951fZQoaAZHQHDaYgieNDNoB00BAWgIR0CYn2NtqHoHdX2UKGgGR0BxQd2A5JbuaAdL3mgIR0CYn/ois4kvdX2UKGgGR0BwJ5hDw6QvaAdNAQFoCEdAmKF0vkBCD3V9lChoBkdARJsx9G7SRmgHS+VoCEdAmKLO/Yao/HV9lChoBkdAcVsigTRIBmgHS9toCEdAmKMVgUlAvHV9lChoBkdAbkjWmP5pJ2gHS+BoCEdAmKPdQGfPHHV9lChoBkdAcFaJVKf4AWgHS/xoCEdAmKPpJ5E+gXV9lChoBkdAcVyCkoF3ZGgHTUUBaAhHQJilFlI3BHl1fZQoaAZHQHGWZzkp7TloB00wAWgIR0CYpl7+1jRVdX2UKGgGR0BxNiUyHmA9aAdL8mgIR0CYpsl9BrvcdX2UKGgGR0BxOz73wkPdaAdL1WgIR0CYpyKyfL9udX2UKGgGR0BhBwCdSVGDaAdN6ANoCEdAmKeu7pV0cXV9lChoBkdAcNwV6/qPfmgHS+NoCEdAmKg5lnRLK3V9lChoBkdAcGFwSJ0nxGgHTTABaAhHQJipVq59Vm11fZQoaAZHQHBCbhBJI2BoB0vgaAhHQJirKq2jO9p1fZQoaAZHQHFN8LWqcVhoB00VAWgIR0CYq47fYSQHdX2UKGgGR0BiL5VbRne0aAdN6ANoCEdAmKwLX+VC5XV9lChoBkdAcPi9JSR8t2gHTRYBaAhHQJis00ygwoN1fZQoaAZHQHHb/mT1TR9oB00HAWgIR0CYrU1aW5YpdX2UKGgGR0BxcPaXa8HwaAdNEAFoCEdAmK2N65XlsHV9lChoBkdAbRomIj4YamgHTQcBaAhHQJiuZUkv9Lp1fZQoaAZHQHJ2I/JNj9ZoB0vJaAhHQJiuqVQhwER1fZQoaAZHQHAMbONYKY1oB0vtaAhHQJivVp/PPcB1fZQoaAZHQHDSPh/Aj6hoB0v8aAhHQJivh6w+t8x1fZQoaAZHQHBuhBZ6lchoB0v7aAhHQJiwv9pAUtZ1fZQoaAZHQHEhMPJ7sv9oB00LAWgIR0CYskhXKbKBdX2UKGgGR0Bsf5KODJ2daAdL7GgIR0CYsvgpjMFEdX2UKGgGR0BbB45cTrVwaAdN6ANoCEdAmLRMbBGhEnV9lChoBkdAcRa50bLlm2gHS+hoCEdAmLSo9gWrO3V9lChoBkdAZO66aLGaQWgHTegDaAhHQJi0wTewcHZ1fZQoaAZHQHJXNA5aNdZoB00HAWgIR0CYtP+JP69CdX2UKGgGR0Bys0waisXBaAdNFQFoCEdAmLUAo1DSgHV9lChoBkdAbsZ2B8QZoGgHS9poCEdAmLX9IsiB5HV9lChoBkdAcnkX3xnWa2gHS+FoCEdAmLdl8gIQe3V9lChoBkdAbP3YwIt16mgHS+hoCEdAmLfisCDEnHV9lChoBkdAcJ7jYqXnhmgHTTwBaAhHQJi4cNTcZcd1fZQoaAZHQHBeJckdFORoB0vaaAhHQJi65dZ7ojh1fZQoaAZHQHI0ERBeHBVoB00TAWgIR0CYu2PaL4vfdX2UKGgGR0BxRVyJbdJraAdL0mgIR0CYu3KMvRJFdX2UKGgGR0BwEJt0mtyQaAdNTwJoCEdAmLwDQNTcZnV9lChoBkdAcKOlOoHcDmgHS8VoCEdAmLzUs4DLbHV9lChoBkdAb3YDf3vhImgHS+ZoCEdAmL3t5le4TnV9lChoBkdAbnUZ88cMmWgHS9toCEdAmL4bIgeRxXV9lChoBkdAYS5ygf2bomgHTegDaAhHQJi+uq+8Gs51fZQoaAZHQHH1tbor4FloB00AAWgIR0CYwGP6sQumdX2UKGgGR0BwAY0/GEPEaAdNLQFoCEdAmMDPjsD4g3V9lChoBkdAcQda9sabWmgHTR0BaAhHQJjC5Y9xIat1fZQoaAZHwD5OquKXOW1oB0vDaAhHQJjDGMPz4Dd1fZQoaAZHQHKTlzQu27ZoB00VAWgIR0CYwyRTS9dvdX2UKGgGR0Bv3f18LKFJaAdL7WgIR0CYw7aWHDaXdX2UKGgGR0BwxwgLZzxPaAdL62gIR0CYw/+pwS8KdX2UKGgGR0BwnoevIOpbaAdL72gIR0CYxCuUUwi8dX2UKGgGR0Bw1Do/zJ6qaAdL4WgIR0CYxKlu3trsdX2UKGgGR0BxLoigTRICaAdNbwFoCEdAmMUjTa0x/XV9lChoBkdAbrlE/B3zMGgHS+JoCEdAmMV6MBIWg3V9lChoBkdAcDnrmyPdVWgHS/VoCEdAmMYjNdJJ5HV9lChoBkdAcuZ8wYcebWgHTREBaAhHQJjHX8ejmCB1fZQoaAZHQG7/gLRa5gBoB0vnaAhHQJjHmV/tpmF1fZQoaAZHQG5oT0Yj0MBoB0veaAhHQJjKGwNb1RN1fZQoaAZHQHGo84tHxz9oB003AWgIR0CYysaSLZSOdX2UKGgGR0BwEWKP4mCzaAdL92gIR0CYytBRAKOUdX2UKGgGR0BxrrBnBciXaAdL/2gIR0CYy0qslsxgdX2UKGgGR0Bx+Xq/ub7TaAdL6WgIR0CYy5UcXFcZdX2UKGgGR0A9s06HTI/8aAdL4mgIR0CYy9wQ176YdX2UKGgGR0Bwg+/fwZwXaAdL2mgIR0CYzBsmv4dqdX2UKGgGR0BwKpsl9jPOaAdL6WgIR0CYzPbVSXMRdX2UKGgGR0BwIfFdcB2faAdL8GgIR0CYzexusLfDdX2UKGgGR0BxZsWFev6kaAdL42gIR0CYzuu/1xsEdX2UKGgGR0Bko29+PRzBaAdN6ANoCEdAmNCk8A7xNXVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c59161ea1e552e207b39e93e69baea577d2d159e117812c9e0dd0d5034ac4024
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a0f54f619fdeb758e8eba12a1591a17befa6b2447ce280a18e9c03d9b134971
|
3 |
size 43762
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-6.1.
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 226.2310303, "std_reward": 77.63136796588182, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-24T14:07:08.328209"}
|