# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Gemmoe model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) GEMMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Crystalcareai/GemMoE-Beta-1": "https://huggingface.co/Crystalcareai/GemMoE-Beta-1/resolve/main/config.json", } class GemmoeConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GemmoeModel`]. It is used to instantiate a Gemmoe model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Gemmoe-7B. e.g. [mhenrichsen/gemmoe-7b](https://huggingface.co/mhenrichsen/gemmoe-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the Gemmoe model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GemmoeModel`] hidden_size (`int`, *optional*, defaults to 3072): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 24576): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 28): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 16): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. head_dim (`int`, *optional*, defaults to 256): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. num_experts_per_tok (`int`, *optional*, defaults to 2): The number of experts used in the sparse mixture of experts layer. num_local_experts (`int`, *optional*, defaults to 8): The number of local experts used in the sparse mixture of experts layer. router_aux_loss_coef (`float`, *optional*, defaults to 0.01): The coefficient for the auxiliary loss of the router. output_router_logits (`bool`, *optional*, defaults to `False`): Whether or not to output the logits of the routers. They are useful for computing the router loss, and should not be returned during inference. n_shared_experts (`int`, *optional*, defaults to `None`): The number of shared experts used in the sparse mixture of experts layer. If set to `None`, no shared experts are used. n_routed_experts (`int`, *optional*, defaults to `None`): The number of routed experts used in the sparse mixture of experts layer. If set to `None`, all experts are routed experts. moe_layer_freq (`int`, *optional*, defaults to 1): The frequency of MoE layers in the model. A value of 1 means MoE layers are used in every layer, a value of 2 means MoE layers are used in every other layer, and so on. first_k_dense_replace (`int`, *optional*, defaults to 0): The number of initial dense layers to replace with MoE layers. If set to 0 (default), no dense layers are replaced. norm_topk_prob (`bool`, *optional*, defaults to `False`): Whether to normalize the top-k probabilities of the router during training. scoring_func (`str`, *optional*, defaults to `'softmax'`): The scoring function used by the router. Can be 'softmax' or 'remap'. aux_loss_alpha (`float`, *optional*, defaults to 0.001): The weight of the auxiliary loss used for training the router. seq_aux (`bool`, *optional*, defaults to `True`): Whether to use sequence-level auxiliary loss for training the router. pretraining_tp (`int`, *optional*, defaults to 1): The tensor parallelism used for pretraining. rope_scaling (`float`, *optional*, defaults to `None`): The scaling factor for the Rotary Position Embedding (RoPE). If set to `None`, no scaling is applied. ```python >>> from transformers import GemmoeModel, GemmoeConfig >>> # Initializing a Gemmoe gemmoe-7b style configuration >>> configuration = GemmoeConfig() >>> # Initializing a model from the gemmoe-7b style configuration >>> model = GemmoeModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gemmoe" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=256000, hidden_size=3072, intermediate_size=24576, num_hidden_layers=28, num_attention_heads=16, num_key_value_heads=16, head_dim=256, hidden_act="gelu", max_position_embeddings=8192, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, num_experts_per_tok=2, num_local_experts=8, n_shared_experts=None, n_routed_experts=None, moe_layer_freq=1, first_k_dense_replace=0, norm_topk_prob=False, scoring_func='softmax', aux_loss_alpha=0.001, seq_aux=True, pretraining_tp=1, rope_scaling=None, router_aux_loss_coef=0.02, output_router_logits=False, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.num_experts_per_tok = num_experts_per_tok self.num_local_experts = num_local_experts self.n_shared_experts = n_shared_experts self.n_routed_experts = n_routed_experts self.moe_layer_freq = moe_layer_freq self.first_k_dense_replace = first_k_dense_replace self.norm_topk_prob = norm_topk_prob self.scoring_func = scoring_func self.aux_loss_alpha = aux_loss_alpha self.seq_aux = seq_aux self.pretraining_tp = pretraining_tp self.rope_scaling = rope_scaling self.router_aux_loss_coef = router_aux_loss_coef self.output_router_logits = output_router_logits super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )