Crystalcareai commited on
Commit
a00a1ac
1 Parent(s): 4dcdcb5

Update config.json

Browse files
Files changed (1) hide show
  1. config.json +1446 -33
config.json CHANGED
@@ -1,33 +1,1446 @@
1
- {
2
- "architectures": [
3
- "QuietForCausalLM"
4
- ],
5
- "auto_map": {
6
- "AutoConfig": "configuration_quiet.QuietConfig",
7
- "AutoModel": "modeling_quiet.QuietModel",
8
- "AutoModelForCausalLM": "modeling_quiet.QuietForCausalLM"
9
- },
10
- "bos_token_id": 1,
11
- "eos_token_id": 2,
12
- "hidden_act": "silu",
13
- "hidden_size": 4096,
14
- "initializer_range": 0.02,
15
- "intermediate_size": 14336,
16
- "max_position_embeddings": 32768,
17
- "model_type": "quiet",
18
- "max_thoughts": 3,
19
- "thought_length": 10,
20
- "num_attention_heads": 32,
21
- "num_hidden_layers": 32,
22
- "start_token_id":0,
23
- "end_token_id": 2,
24
- "num_key_value_heads": 8,
25
- "rms_norm_eps": 1e-05,
26
- "rope_theta": 10000.0,
27
- "sliding_window": 4096,
28
- "tie_word_embeddings": false,
29
- "torch_dtype": "bfloat16",
30
- "transformers_version": "4.34.0.dev0",
31
- "use_cache": true,
32
- "vocab_size": 32000
33
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Quiet AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Quiet model."""
21
+ import inspect
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+ from dataclasses import dataclass
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ import torch.utils.checkpoint
30
+ from torch import nn
31
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
32
+
33
+ from transformers.activations import ACT2FN
34
+ from transformers.cache_utils import Cache, DynamicCache
35
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
36
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
37
+ from transformers.modeling_utils import PreTrainedModel
38
+ from transformers.utils import (
39
+ add_start_docstrings,
40
+ add_start_docstrings_to_model_forward,
41
+ is_flash_attn_2_available,
42
+ is_flash_attn_greater_or_equal_2_10,
43
+ logging,
44
+ replace_return_docstrings,
45
+ )
46
+ from .configuration_quiet import QuietConfig
47
+
48
+
49
+ if is_flash_attn_2_available():
50
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
51
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
52
+
53
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
54
+
55
+
56
+ logger = logging.get_logger(__name__)
57
+
58
+ _CONFIG_FOR_DOC = "QuietConfig"
59
+
60
+
61
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
62
+ def _get_unpad_data(attention_mask):
63
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
64
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
65
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
66
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
67
+ return (
68
+ indices,
69
+ cu_seqlens,
70
+ max_seqlen_in_batch,
71
+ )
72
+
73
+
74
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Quiet
75
+ class QuietRMSNorm(nn.Module):
76
+ def __init__(self, hidden_size, eps=1e-6):
77
+ """
78
+ QuietRMSNorm is equivalent to T5LayerNorm
79
+ """
80
+ super().__init__()
81
+ self.weight = nn.Parameter(torch.ones(hidden_size))
82
+ self.variance_epsilon = eps
83
+
84
+ def forward(self, hidden_states):
85
+ input_dtype = hidden_states.dtype
86
+ hidden_states = hidden_states.to(torch.float32)
87
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
88
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
89
+ return self.weight * hidden_states.to(input_dtype)
90
+
91
+
92
+ # copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Quiet
93
+ # TODO @Arthur no longer copied from LLama after static cache
94
+ class QuietRotaryEmbedding(nn.Module):
95
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
96
+ super().__init__()
97
+
98
+ self.dim = dim
99
+ self.max_position_embeddings = max_position_embeddings
100
+ self.base = base
101
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
102
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
103
+
104
+ # Build here to make `torch.jit.trace` work.
105
+ self._set_cos_sin_cache(
106
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
107
+ )
108
+
109
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
110
+ self.max_seq_len_cached = seq_len
111
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
112
+
113
+ freqs = torch.outer(t, self.inv_freq)
114
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
115
+ emb = torch.cat((freqs, freqs), dim=-1)
116
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
117
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
118
+
119
+ def forward(self, x, seq_len=None):
120
+ # x: [bs, num_attention_heads, seq_len, head_size]
121
+ if seq_len > self.max_seq_len_cached:
122
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
123
+
124
+ return (
125
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
126
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
127
+ )
128
+
129
+
130
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
131
+ def rotate_half(x):
132
+ """Rotates half the hidden dims of the input."""
133
+ x1 = x[..., : x.shape[-1] // 2]
134
+ x2 = x[..., x.shape[-1] // 2 :]
135
+ return torch.cat((-x2, x1), dim=-1)
136
+
137
+
138
+ # copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
139
+ # TODO @Arthur no longer copied from LLama after static cache
140
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
141
+ """Applies Rotary Position Embedding to the query and key tensors.
142
+
143
+ Args:
144
+ q (`torch.Tensor`): The query tensor.
145
+ k (`torch.Tensor`): The key tensor.
146
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
147
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
148
+ position_ids (`torch.Tensor`):
149
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
150
+ used to pass offsetted position ids when working with a KV-cache.
151
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
152
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
153
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
154
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
155
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
156
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
157
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
158
+ Returns:
159
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
160
+ """
161
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
162
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
163
+ q_embed = (q * cos) + (rotate_half(q) * sin)
164
+ k_embed = (k * cos) + (rotate_half(k) * sin)
165
+ return q_embed, k_embed
166
+
167
+
168
+ class QuietMLP(nn.Module):
169
+ def __init__(self, config):
170
+ super().__init__()
171
+ self.config = config
172
+ self.hidden_size = config.hidden_size
173
+ self.intermediate_size = config.intermediate_size
174
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
175
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
176
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
177
+ self.act_fn = ACT2FN[config.hidden_act]
178
+
179
+ def forward(self, x):
180
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
181
+
182
+
183
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
184
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
185
+ """
186
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
187
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
188
+ """
189
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
190
+ if n_rep == 1:
191
+ return hidden_states
192
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
193
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
194
+
195
+
196
+ class QuietAttention(nn.Module):
197
+ """
198
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
199
+ and "Generating Long Sequences with Sparse Transformers".
200
+ """
201
+
202
+ def __init__(self, config: QuietConfig, layer_idx: Optional[int] = None):
203
+ super().__init__()
204
+ self.config = config
205
+ self.layer_idx = layer_idx
206
+ if layer_idx is None:
207
+ logger.warning_once(
208
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
209
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
210
+ "when creating this class."
211
+ )
212
+
213
+ self.hidden_size = config.hidden_size
214
+ self.num_heads = config.num_attention_heads
215
+ self.head_dim = self.hidden_size // self.num_heads
216
+ self.num_key_value_heads = config.num_key_value_heads
217
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
218
+ self.max_position_embeddings = config.max_position_embeddings
219
+ self.rope_theta = config.rope_theta
220
+ self.is_causal = True
221
+ self.attention_dropout = config.attention_dropout
222
+
223
+ if (self.head_dim * self.num_heads) != self.hidden_size:
224
+ raise ValueError(
225
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
226
+ f" and `num_heads`: {self.num_heads})."
227
+ )
228
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
229
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
230
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
231
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
232
+
233
+ self.rotary_emb = QuietRotaryEmbedding(
234
+ self.head_dim,
235
+ max_position_embeddings=self.max_position_embeddings,
236
+ base=self.rope_theta,
237
+ )
238
+
239
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
240
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
241
+
242
+ def forward(
243
+ self,
244
+ hidden_states: torch.Tensor,
245
+ attention_mask: Optional[torch.Tensor] = None,
246
+ position_ids: Optional[torch.LongTensor] = None,
247
+ past_key_value: Optional[Cache] = None,
248
+ output_attentions: bool = False,
249
+ use_cache: bool = False,
250
+ **kwargs,
251
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
252
+ if "padding_mask" in kwargs:
253
+ warnings.warn(
254
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
255
+ )
256
+ bsz, q_len, _ = hidden_states.size()
257
+
258
+ query_states = self.q_proj(hidden_states)
259
+ key_states = self.k_proj(hidden_states)
260
+ value_states = self.v_proj(hidden_states)
261
+
262
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
263
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
264
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
265
+
266
+ kv_seq_len = key_states.shape[-2]
267
+ if past_key_value is not None:
268
+ if self.layer_idx is None:
269
+ raise ValueError(
270
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
271
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
272
+ "with a layer index."
273
+ )
274
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
275
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
276
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
277
+
278
+ if past_key_value is not None:
279
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
280
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
281
+
282
+ # repeat k/v heads if n_kv_heads < n_heads
283
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
284
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
285
+
286
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
287
+
288
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
289
+ raise ValueError(
290
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
291
+ f" {attn_weights.size()}"
292
+ )
293
+
294
+ if attention_mask is not None:
295
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
296
+ raise ValueError(
297
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
298
+ )
299
+
300
+ attn_weights = attn_weights + attention_mask
301
+
302
+ # upcast attention to fp32
303
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
304
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
305
+ attn_output = torch.matmul(attn_weights, value_states)
306
+
307
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
308
+ raise ValueError(
309
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
310
+ f" {attn_output.size()}"
311
+ )
312
+
313
+ attn_output = attn_output.transpose(1, 2).contiguous()
314
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
315
+
316
+ attn_output = self.o_proj(attn_output)
317
+
318
+ if not output_attentions:
319
+ attn_weights = None
320
+
321
+ return attn_output, attn_weights, past_key_value
322
+
323
+
324
+ class QuietFlashAttention2(QuietAttention):
325
+ """
326
+ Quiet flash attention module. This module inherits from `QuietAttention` as the weights of the module stays
327
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
328
+ flash attention and deal with padding tokens in case the input contains any of them.
329
+ """
330
+
331
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
332
+ def __init__(self, *args, **kwargs):
333
+ super().__init__(*args, **kwargs)
334
+
335
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
336
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
337
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
338
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
339
+
340
+ def forward(
341
+ self,
342
+ hidden_states: torch.Tensor,
343
+ attention_mask: Optional[torch.Tensor] = None,
344
+ position_ids: Optional[torch.LongTensor] = None,
345
+ past_key_value: Optional[Cache] = None,
346
+ output_attentions: bool = False,
347
+ use_cache: bool = False,
348
+ **kwargs,
349
+ ):
350
+ if "padding_mask" in kwargs:
351
+ warnings.warn(
352
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
353
+ )
354
+
355
+ # overwrite attention_mask with padding_mask
356
+ attention_mask = kwargs.pop("padding_mask")
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ query_states = self.q_proj(hidden_states)
360
+ key_states = self.k_proj(hidden_states)
361
+ value_states = self.v_proj(hidden_states)
362
+
363
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
364
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
365
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
366
+
367
+ kv_seq_len = key_states.shape[-2]
368
+ if past_key_value is not None:
369
+ if self.layer_idx is None:
370
+ raise ValueError(
371
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
372
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
373
+ "with a layer index."
374
+ )
375
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
376
+
377
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
378
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
379
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
380
+
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ use_sliding_windows = (
384
+ _flash_supports_window_size
385
+ and getattr(self.config, "sliding_window", None) is not None
386
+ and kv_seq_len > self.config.sliding_window
387
+ )
388
+
389
+ if not _flash_supports_window_size:
390
+ logger.warning_once(
391
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
392
+ " make sure to upgrade flash-attn library."
393
+ )
394
+
395
+ if past_key_value is not None:
396
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
397
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
398
+ if (
399
+ getattr(self.config, "sliding_window", None) is not None
400
+ and kv_seq_len > self.config.sliding_window
401
+ and cache_has_contents
402
+ ):
403
+ slicing_tokens = 1 - self.config.sliding_window
404
+
405
+ past_key = past_key_value[self.layer_idx][0]
406
+ past_value = past_key_value[self.layer_idx][1]
407
+
408
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
409
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
410
+
411
+ if past_key.shape[-2] != self.config.sliding_window - 1:
412
+ raise ValueError(
413
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
414
+ f" {past_key.shape}"
415
+ )
416
+
417
+ if attention_mask is not None:
418
+ attention_mask = attention_mask[:, slicing_tokens:]
419
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
420
+
421
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
422
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
423
+
424
+ # repeat k/v heads if n_kv_heads < n_heads
425
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
426
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
427
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
428
+
429
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
430
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
431
+ # cast them back in float16 just to be sure everything works as expected.
432
+ input_dtype = query_states.dtype
433
+ if input_dtype == torch.float32:
434
+ if torch.is_autocast_enabled():
435
+ target_dtype = torch.get_autocast_gpu_dtype()
436
+ # Handle the case where the model is quantized
437
+ elif hasattr(self.config, "_pre_quantization_dtype"):
438
+ target_dtype = self.config._pre_quantization_dtype
439
+ else:
440
+ target_dtype = self.q_proj.weight.dtype
441
+
442
+ logger.warning_once(
443
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
444
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
445
+ f" {target_dtype}."
446
+ )
447
+
448
+ query_states = query_states.to(target_dtype)
449
+ key_states = key_states.to(target_dtype)
450
+ value_states = value_states.to(target_dtype)
451
+
452
+ # Reashape to the expected shape for Flash Attention
453
+ query_states = query_states.transpose(1, 2)
454
+ key_states = key_states.transpose(1, 2)
455
+ value_states = value_states.transpose(1, 2)
456
+
457
+ attn_output = self._flash_attention_forward(
458
+ query_states,
459
+ key_states,
460
+ value_states,
461
+ attention_mask,
462
+ q_len,
463
+ dropout=dropout_rate,
464
+ use_sliding_windows=use_sliding_windows,
465
+ )
466
+
467
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
468
+ attn_output = self.o_proj(attn_output)
469
+
470
+ if not output_attentions:
471
+ attn_weights = None
472
+
473
+ return attn_output, attn_weights, past_key_value
474
+
475
+ def _flash_attention_forward(
476
+ self,
477
+ query_states,
478
+ key_states,
479
+ value_states,
480
+ attention_mask,
481
+ query_length,
482
+ dropout=0.0,
483
+ softmax_scale=None,
484
+ use_sliding_windows=False,
485
+ ):
486
+ """
487
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
488
+ first unpad the input, then computes the attention scores and pad the final attention scores.
489
+
490
+ Args:
491
+ query_states (`torch.Tensor`):
492
+ Input query states to be passed to Flash Attention API
493
+ key_states (`torch.Tensor`):
494
+ Input key states to be passed to Flash Attention API
495
+ value_states (`torch.Tensor`):
496
+ Input value states to be passed to Flash Attention API
497
+ attention_mask (`torch.Tensor`):
498
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
499
+ position of padding tokens and 1 for the position of non-padding tokens.
500
+ dropout (`float`):
501
+ Attention dropout
502
+ softmax_scale (`float`, *optional*):
503
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
504
+ use_sliding_windows (`bool`, *optional*):
505
+ Whether to activate sliding window attention.
506
+ """
507
+ if not self._flash_attn_uses_top_left_mask:
508
+ causal = self.is_causal
509
+ else:
510
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
511
+ causal = self.is_causal and query_length != 1
512
+
513
+ # Contains at least one padding token in the sequence
514
+ if attention_mask is not None:
515
+ batch_size = query_states.shape[0]
516
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
517
+ query_states, key_states, value_states, attention_mask, query_length
518
+ )
519
+
520
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
521
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
522
+
523
+ if not use_sliding_windows:
524
+ attn_output_unpad = flash_attn_varlen_func(
525
+ query_states,
526
+ key_states,
527
+ value_states,
528
+ cu_seqlens_q=cu_seqlens_q,
529
+ cu_seqlens_k=cu_seqlens_k,
530
+ max_seqlen_q=max_seqlen_in_batch_q,
531
+ max_seqlen_k=max_seqlen_in_batch_k,
532
+ dropout_p=dropout,
533
+ softmax_scale=softmax_scale,
534
+ causal=causal,
535
+ )
536
+ else:
537
+ attn_output_unpad = flash_attn_varlen_func(
538
+ query_states,
539
+ key_states,
540
+ value_states,
541
+ cu_seqlens_q=cu_seqlens_q,
542
+ cu_seqlens_k=cu_seqlens_k,
543
+ max_seqlen_q=max_seqlen_in_batch_q,
544
+ max_seqlen_k=max_seqlen_in_batch_k,
545
+ dropout_p=dropout,
546
+ softmax_scale=softmax_scale,
547
+ causal=causal,
548
+ window_size=(self.config.sliding_window, self.config.sliding_window),
549
+ )
550
+
551
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
552
+ else:
553
+ if not use_sliding_windows:
554
+ attn_output = flash_attn_func(
555
+ query_states,
556
+ key_states,
557
+ value_states,
558
+ dropout,
559
+ softmax_scale=softmax_scale,
560
+ causal=causal,
561
+ )
562
+ else:
563
+ attn_output = flash_attn_func(
564
+ query_states,
565
+ key_states,
566
+ value_states,
567
+ dropout,
568
+ softmax_scale=softmax_scale,
569
+ causal=causal,
570
+ window_size=(self.config.sliding_window, self.config.sliding_window),
571
+ )
572
+
573
+ return attn_output
574
+
575
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
576
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
577
+
578
+ # On the first iteration we need to properly re-create the padding mask
579
+ # by slicing it on the proper place
580
+ if kv_seq_len != attention_mask.shape[-1]:
581
+ attention_mask_num_tokens = attention_mask.shape[-1]
582
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
583
+
584
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
585
+
586
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
587
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
588
+
589
+ if query_length == kv_seq_len:
590
+ query_layer = index_first_axis(
591
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
592
+ )
593
+ cu_seqlens_q = cu_seqlens_k
594
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
595
+ indices_q = indices_k
596
+ elif query_length == 1:
597
+ max_seqlen_in_batch_q = 1
598
+ cu_seqlens_q = torch.arange(
599
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
600
+ ) # There is a memcpy here, that is very bad.
601
+ indices_q = cu_seqlens_q[:-1]
602
+ query_layer = query_layer.squeeze(1)
603
+ else:
604
+ # The -q_len: slice assumes left padding.
605
+ attention_mask = attention_mask[:, -query_length:]
606
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
607
+
608
+ return (
609
+ query_layer,
610
+ key_layer,
611
+ value_layer,
612
+ indices_q,
613
+ (cu_seqlens_q, cu_seqlens_k),
614
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
615
+ )
616
+
617
+
618
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Quiet
619
+ # TODO @Arthur no longer copied from LLama after static cache
620
+ class QuietSdpaAttention(QuietAttention):
621
+ """
622
+ Quiet attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
623
+ `QuietAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
624
+ SDPA API.
625
+ """
626
+
627
+ # Adapted from QuietAttention.forward
628
+ def forward(
629
+ self,
630
+ hidden_states: torch.Tensor,
631
+ attention_mask: Optional[torch.Tensor] = None,
632
+ position_ids: Optional[torch.LongTensor] = None,
633
+ past_key_value: Optional[Cache] = None,
634
+ output_attentions: bool = False,
635
+ use_cache: bool = False,
636
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
637
+ if output_attentions:
638
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
639
+ logger.warning_once(
640
+ "QuietModel is using QuietSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
641
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
642
+ )
643
+ return super().forward(
644
+ hidden_states=hidden_states,
645
+ attention_mask=attention_mask,
646
+ position_ids=position_ids,
647
+ past_key_value=past_key_value,
648
+ output_attentions=output_attentions,
649
+ use_cache=use_cache,
650
+ )
651
+
652
+ bsz, q_len, _ = hidden_states.size()
653
+
654
+ query_states = self.q_proj(hidden_states)
655
+ key_states = self.k_proj(hidden_states)
656
+ value_states = self.v_proj(hidden_states)
657
+
658
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
659
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
660
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
661
+
662
+ kv_seq_len = key_states.shape[-2]
663
+ if past_key_value is not None:
664
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
665
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
666
+
667
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
668
+
669
+ if past_key_value is not None:
670
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
671
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
672
+
673
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
674
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
675
+
676
+ if attention_mask is not None:
677
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
678
+ raise ValueError(
679
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
680
+ )
681
+
682
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
683
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
684
+ if query_states.device.type == "cuda" and attention_mask is not None:
685
+ query_states = query_states.contiguous()
686
+ key_states = key_states.contiguous()
687
+ value_states = value_states.contiguous()
688
+
689
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
690
+ query_states,
691
+ key_states,
692
+ value_states,
693
+ attn_mask=attention_mask,
694
+ dropout_p=self.attention_dropout if self.training else 0.0,
695
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
696
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
697
+ )
698
+
699
+ attn_output = attn_output.transpose(1, 2).contiguous()
700
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
701
+
702
+ attn_output = self.o_proj(attn_output)
703
+
704
+ return attn_output, None, past_key_value
705
+
706
+
707
+ QUIET_ATTENTION_CLASSES = {
708
+ "eager": QuietAttention,
709
+ "flash_attention_2": QuietFlashAttention2,
710
+ "sdpa": QuietSdpaAttention,
711
+ }
712
+
713
+
714
+ class QuietDecoderLayer(nn.Module):
715
+ def __init__(self, config: QuietConfig, layer_idx: int):
716
+ super().__init__()
717
+ self.hidden_size = config.hidden_size
718
+
719
+ self.self_attn = QUIET_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
720
+
721
+ self.mlp = QuietMLP(config)
722
+ self.input_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
723
+ self.post_attention_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
724
+
725
+ def forward(
726
+ self,
727
+ hidden_states: torch.Tensor,
728
+ attention_mask: Optional[torch.Tensor] = None,
729
+ position_ids: Optional[torch.LongTensor] = None,
730
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
731
+ output_attentions: Optional[bool] = False,
732
+ use_cache: Optional[bool] = False,
733
+ **kwargs,
734
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
735
+ if "padding_mask" in kwargs:
736
+ warnings.warn(
737
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
738
+ )
739
+ """
740
+ Args:
741
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
742
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
743
+ `(batch, sequence_length)` where padding elements are indicated by 0.
744
+ output_attentions (`bool`, *optional*):
745
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
746
+ returned tensors for more detail.
747
+ use_cache (`bool`, *optional*):
748
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
749
+ (see `past_key_values`).
750
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
751
+ """
752
+
753
+ residual = hidden_states
754
+
755
+ hidden_states = self.input_layernorm(hidden_states)
756
+
757
+ # Self Attention
758
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
759
+ hidden_states=hidden_states,
760
+ attention_mask=attention_mask,
761
+ position_ids=position_ids,
762
+ past_key_value=past_key_value,
763
+ output_attentions=output_attentions,
764
+ use_cache=use_cache,
765
+ )
766
+ hidden_states = residual + hidden_states
767
+
768
+ # Fully Connected
769
+ residual = hidden_states
770
+ hidden_states = self.post_attention_layernorm(hidden_states)
771
+ hidden_states = self.mlp(hidden_states)
772
+ hidden_states = residual + hidden_states
773
+
774
+ outputs = (hidden_states,)
775
+
776
+ if output_attentions:
777
+ outputs += (self_attn_weights,)
778
+
779
+ if use_cache:
780
+ outputs += (present_key_value,)
781
+
782
+ return outputs
783
+
784
+
785
+ QUIET_START_DOCSTRING = r"""
786
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
787
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
788
+ etc.)
789
+
790
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
791
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
792
+ and behavior.
793
+
794
+ Parameters:
795
+ config ([`QuietConfig`]):
796
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
797
+ load the weights associated with the model, only the configuration. Check out the
798
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
799
+ """
800
+
801
+
802
+ @add_start_docstrings(
803
+ "The bare Quiet Model outputting raw hidden-states without any specific head on top.",
804
+ QUIET_START_DOCSTRING,
805
+ )
806
+ class QuietPreTrainedModel(PreTrainedModel):
807
+ config_class = QuietConfig
808
+ base_model_prefix = "model"
809
+ supports_gradient_checkpointing = True
810
+ _no_split_modules = ["QuietDecoderLayer"]
811
+ _skip_keys_device_placement = "past_key_values"
812
+ _supports_flash_attn_2 = True
813
+ _supports_sdpa = True
814
+ _supports_cache_class = True
815
+
816
+ def _init_weights(self, module):
817
+ std = self.config.initializer_range
818
+ if isinstance(module, nn.Linear):
819
+ module.weight.data.normal_(mean=0.0, std=std)
820
+ if module.bias is not None:
821
+ module.bias.data.zero_()
822
+ elif isinstance(module, nn.Embedding):
823
+ module.weight.data.normal_(mean=0.0, std=std)
824
+ if module.padding_idx is not None:
825
+ module.weight.data[module.padding_idx].zero_()
826
+
827
+
828
+ QUIET_INPUTS_DOCSTRING = r"""
829
+ Args:
830
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
831
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
832
+ it.
833
+
834
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
835
+ [`PreTrainedTokenizer.__call__`] for details.
836
+
837
+ [What are input IDs?](../glossary#input-ids)
838
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
839
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
840
+
841
+ - 1 for tokens that are **not masked**,
842
+ - 0 for tokens that are **masked**.
843
+
844
+ [What are attention masks?](../glossary#attention-mask)
845
+
846
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
847
+ [`PreTrainedTokenizer.__call__`] for details.
848
+
849
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
850
+ `past_key_values`).
851
+
852
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
853
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
854
+ information on the default strategy.
855
+
856
+ - 1 indicates the head is **not masked**,
857
+ - 0 indicates the head is **masked**.
858
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
859
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
860
+ config.n_positions - 1]`.
861
+
862
+ [What are position IDs?](../glossary#position-ids)
863
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
864
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
865
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
866
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
867
+
868
+ Two formats are allowed:
869
+ - a [`~cache_utils.Cache`] instance;
870
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
871
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
872
+ cache format.
873
+
874
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
875
+ legacy cache format will be returned.
876
+
877
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
878
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
879
+ of shape `(batch_size, sequence_length)`.
880
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
881
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
882
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
883
+ model's internal embedding lookup matrix.
884
+ use_cache (`bool`, *optional*):
885
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
886
+ `past_key_values`).
887
+ output_attentions (`bool`, *optional*):
888
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
889
+ tensors for more detail.
890
+ output_hidden_states (`bool`, *optional*):
891
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
892
+ more detail.
893
+ return_dict (`bool`, *optional*):
894
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
895
+ """
896
+
897
+
898
+ @add_start_docstrings(
899
+ "The bare Quiet Model outputting raw hidden-states without any specific head on top.",
900
+ QUIET_START_DOCSTRING,
901
+ )
902
+ class QuietModel(QuietPreTrainedModel):
903
+ """
904
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`QuietDecoderLayer`]
905
+
906
+ Args:
907
+ config: QuietConfig
908
+ """
909
+
910
+ def __init__(self, config: QuietConfig):
911
+ super().__init__(config)
912
+ self.padding_idx = config.pad_token_id
913
+ self.vocab_size = config.vocab_size
914
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
915
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
916
+ self.layers = nn.ModuleList(
917
+ [QuietDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
918
+ )
919
+ self._attn_implementation = config._attn_implementation
920
+ self.norm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
921
+
922
+ self.gradient_checkpointing = False
923
+ # Initialize weights and apply final processing
924
+ self.post_init()
925
+
926
+ def get_input_embeddings(self):
927
+ return self.embed_tokens
928
+
929
+ def set_input_embeddings(self, value):
930
+ self.embed_tokens = value
931
+
932
+ def _generate_thoughts(self, hidden_states, max_length):
933
+ thought_ids = []
934
+ thought_embeddings = []
935
+
936
+ for _ in range(self.config.max_thoughts):
937
+ thought_id = torch.LongTensor([[self.config.start_token_id]]).to(hidden_states.device)
938
+ thought_embedding = self.embed_tokens(thought_id)
939
+
940
+ for _ in range(max_length):
941
+ outputs = self.forward(
942
+ inputs_embeds=thought_embedding,
943
+ attention_mask=None,
944
+ use_cache=True,
945
+ )
946
+ logits = outputs.logits[:, -1, :]
947
+ next_token_id = torch.argmax(logits, dim=-1)
948
+
949
+ if next_token_id == self.config.end_token_id:
950
+ break
951
+
952
+ thought_id = torch.cat([thought_id, next_token_id.unsqueeze(0)], dim=-1)
953
+ thought_embedding = torch.cat([thought_embedding, self.embed_tokens(next_token_id.unsqueeze(0))], dim=1)
954
+
955
+ thought_ids.append(thought_id.squeeze(0))
956
+ thought_embeddings.append(thought_embedding.squeeze(0))
957
+
958
+ return thought_ids, thought_embeddings
959
+
960
+
961
+ @add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
962
+ def forward(
963
+ self,
964
+ input_ids: torch.LongTensor = None,
965
+ attention_mask: Optional[torch.Tensor] = None,
966
+ position_ids: Optional[torch.LongTensor] = None,
967
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
968
+ inputs_embeds: Optional[torch.FloatTensor] = None,
969
+ use_cache: Optional[bool] = None,
970
+ output_attentions: Optional[bool] = None,
971
+ output_hidden_states: Optional[bool] = None,
972
+ return_dict: Optional[bool] = None,
973
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
974
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
975
+ output_hidden_states = (
976
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
977
+ )
978
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
979
+
980
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
981
+
982
+ # retrieve input_ids and inputs_embeds
983
+ if input_ids is not None and inputs_embeds is not None:
984
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
985
+ elif input_ids is not None:
986
+ batch_size, seq_length = input_ids.shape
987
+ elif inputs_embeds is not None:
988
+ batch_size, seq_length, _ = inputs_embeds.shape
989
+ else:
990
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
991
+
992
+ if self.gradient_checkpointing and self.training:
993
+ if use_cache:
994
+ logger.warning_once(
995
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
996
+ )
997
+ use_cache = False
998
+
999
+ past_key_values_length = 0
1000
+
1001
+ if use_cache:
1002
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1003
+ if use_legacy_cache:
1004
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1005
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1006
+
1007
+ if position_ids is None:
1008
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1009
+ position_ids = torch.arange(
1010
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1011
+ )
1012
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1013
+ else:
1014
+ position_ids = position_ids.view(-1, seq_length).long()
1015
+
1016
+ if inputs_embeds is None:
1017
+ inputs_embeds = self.embed_tokens(input_ids)
1018
+
1019
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1020
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1021
+ if is_padding_right:
1022
+ raise ValueError(
1023
+ "You are attempting to perform batched generation with padding_side='right'"
1024
+ " this may lead to unexpected behaviour for Flash Attention version of Quiet. Make sure to "
1025
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1026
+ )
1027
+
1028
+ if self._attn_implementation == "flash_attention_2":
1029
+ # 2d mask is passed through the layers
1030
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1031
+ elif self._attn_implementation == "sdpa" and not output_attentions:
1032
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1033
+ # the manual implementation that requires a 4D causal mask in all cases.
1034
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1035
+ attention_mask,
1036
+ (batch_size, seq_length),
1037
+ inputs_embeds,
1038
+ past_key_values_length,
1039
+ )
1040
+ else:
1041
+ # 4d mask is passed through the layers
1042
+ attention_mask = _prepare_4d_causal_attention_mask(
1043
+ attention_mask,
1044
+ (batch_size, seq_length),
1045
+ inputs_embeds,
1046
+ past_key_values_length,
1047
+ sliding_window=self.config.sliding_window,
1048
+ )
1049
+
1050
+ hidden_states = inputs_embeds
1051
+
1052
+ # decoder layers
1053
+ all_hidden_states = () if output_hidden_states else None
1054
+ all_self_attns = () if output_attentions else None
1055
+ next_decoder_cache = None
1056
+
1057
+ for decoder_layer in self.layers:
1058
+ if output_hidden_states:
1059
+ all_hidden_states += (hidden_states,)
1060
+
1061
+ if self.gradient_checkpointing and self.training:
1062
+ layer_outputs = self._gradient_checkpointing_func(
1063
+ decoder_layer.__call__,
1064
+ hidden_states,
1065
+ attention_mask,
1066
+ position_ids,
1067
+ past_key_values,
1068
+ output_attentions,
1069
+ use_cache,
1070
+ )
1071
+ else:
1072
+ layer_outputs = decoder_layer(
1073
+ hidden_states,
1074
+ attention_mask=attention_mask,
1075
+ position_ids=position_ids,
1076
+ past_key_value=past_key_values,
1077
+ output_attentions=output_attentions,
1078
+ use_cache=use_cache,
1079
+ )
1080
+
1081
+ hidden_states = layer_outputs[0]
1082
+
1083
+ if use_cache:
1084
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1085
+
1086
+ if output_attentions:
1087
+ all_self_attns += (layer_outputs[1],)
1088
+
1089
+ hidden_states = self.norm(hidden_states)
1090
+
1091
+ # add hidden states from the last decoder layer
1092
+ if output_hidden_states:
1093
+ all_hidden_states += (hidden_states,)
1094
+
1095
+ next_cache = None
1096
+ if use_cache:
1097
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1098
+
1099
+ if not return_dict:
1100
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1101
+ return BaseModelOutputWithPast(
1102
+ last_hidden_state=hidden_states,
1103
+ past_key_values=next_cache,
1104
+ hidden_states=all_hidden_states,
1105
+ attentions=all_self_attns,
1106
+ )
1107
+
1108
+
1109
+ class QuietForCausalLM(QuietPreTrainedModel):
1110
+ def __init__(self, config):
1111
+ super().__init__(config)
1112
+ self.model = QuietModel(config)
1113
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1114
+ self.mixing_head = nn.Sequential(
1115
+ nn.Linear(config.hidden_size * 2, config.hidden_size),
1116
+ nn.ReLU(),
1117
+ nn.Linear(config.hidden_size, 1),
1118
+ )
1119
+
1120
+ self.max_thoughts = config.max_thoughts
1121
+ self.thought_length = config.thought_length
1122
+ self.use_policy_loss = True
1123
+ self.remove_negative_rewards = True
1124
+
1125
+ self.post_init()
1126
+
1127
+ def calculate_policy_loss(self, thoughts, rewards):
1128
+ thought_log_probs = []
1129
+ for thought in thoughts:
1130
+ thought_log_prob = self.lm_head(thought).log_softmax(dim=-1)
1131
+ thought_log_probs.append(thought_log_prob)
1132
+
1133
+ thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size)
1134
+ thought_probs = torch.exp(thought_log_probs)
1135
+
1136
+ policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1))
1137
+
1138
+ return policy_loss
1139
+
1140
+ def get_input_embeddings(self):
1141
+ return self.model.embed_tokens
1142
+
1143
+ def set_input_embeddings(self, value):
1144
+ self.model.embed_tokens = value
1145
+
1146
+ def get_output_embeddings(self):
1147
+ return self.lm_head
1148
+
1149
+ def set_output_embeddings(self, new_embeddings):
1150
+ self.lm_head = new_embeddings
1151
+
1152
+ def set_decoder(self, decoder):
1153
+ self.model = decoder
1154
+
1155
+ def get_decoder(self):
1156
+ return self.model
1157
+
1158
+ @add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
1159
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1160
+ def forward(
1161
+ self,
1162
+ input_ids: torch.LongTensor = None,
1163
+ attention_mask: Optional[torch.Tensor] = None,
1164
+ position_ids: Optional[torch.LongTensor] = None,
1165
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1166
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1167
+ labels: Optional[torch.LongTensor] = None,
1168
+ use_cache: Optional[bool] = None,
1169
+ output_attentions: Optional[bool] = None,
1170
+ output_hidden_states: Optional[bool] = None,
1171
+ return_dict: Optional[bool] = None,
1172
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1173
+ r"""
1174
+ Args:
1175
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1176
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1177
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1178
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1179
+
1180
+ Returns:
1181
+
1182
+ Example:
1183
+
1184
+ ```python
1185
+ >>> from transformers import AutoTokenizer, QuietForCausalLM
1186
+
1187
+ >>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1")
1188
+ >>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1")
1189
+
1190
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1191
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1192
+
1193
+ >>> # Generate
1194
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1195
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1196
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1197
+ ```"""
1198
+
1199
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1200
+ output_hidden_states = (
1201
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1202
+ )
1203
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1204
+
1205
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1206
+ outputs = self.model(
1207
+ input_ids,
1208
+ attention_mask=attention_mask,
1209
+ position_ids=position_ids,
1210
+ past_key_values=past_key_values,
1211
+ inputs_embeds=inputs_embeds,
1212
+ use_cache=use_cache,
1213
+ output_attentions=output_attentions,
1214
+ output_hidden_states=output_hidden_states,
1215
+ return_dict=return_dict,
1216
+ )
1217
+
1218
+ hidden_states = outputs.last_hidden_state
1219
+ base_logits = outputs.logits
1220
+
1221
+ thought_ids, thought_embeddings = self.model._generate_thoughts(hidden_states, max_length=self.thought_length)
1222
+ thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state
1223
+ thought_logits = self.lm_head(thought_hidden_states)
1224
+
1225
+ mixing_input = torch.cat([hidden_states, thought_hidden_states], dim=-1)
1226
+ mixing_weights = self.mixing_head(mixing_input).squeeze(-1) # (batch_size, seq_length)
1227
+ mixed_logits = base_logits * (1 - mixing_weights.unsqueeze(-1)) + thought_logits * mixing_weights.unsqueeze(-1)
1228
+ loss = None
1229
+ if labels is not None:
1230
+ # Shift so that tokens < n predict n
1231
+ shift_logits = mixed_logits[..., :-1, :].contiguous()
1232
+ shift_labels = labels[..., 1:].contiguous()
1233
+ # Flatten the tokens
1234
+ loss_fct = CrossEntropyLoss()
1235
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1236
+
1237
+ if self.use_policy_loss:
1238
+ rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts)
1239
+ if self.remove_negative_rewards:
1240
+ rewards = torch.clamp(rewards, min=0)
1241
+ policy_loss = self.calculate_policy_loss(thought_ids, rewards)
1242
+ loss = loss + policy_loss
1243
+ else:
1244
+ loss = None
1245
+
1246
+ if not return_dict:
1247
+ output = (mixed_logits,) + outputs[1:]
1248
+ return ((loss,) + output) if loss is not None else output
1249
+
1250
+ return CausalLMOutputWithPast(
1251
+ loss=loss if loss is not None else None,
1252
+ logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
1253
+ past_key_values=outputs.past_key_values,
1254
+ hidden_states=outputs.hidden_states,
1255
+ attentions=outputs.attentions,
1256
+ )
1257
+
1258
+ def prepare_inputs_for_generation(
1259
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1260
+ ):
1261
+ # Omit tokens covered by past_key_values
1262
+ if past_key_values is not None:
1263
+ if isinstance(past_key_values, Cache):
1264
+ cache_length = past_key_values.get_seq_length()
1265
+ past_length = past_key_values.seen_tokens
1266
+ max_cache_length = past_key_values.get_max_length()
1267
+ else:
1268
+ cache_length = past_length = past_key_values[0][0].shape[2]
1269
+ max_cache_length = None
1270
+
1271
+ # Keep only the unprocessed tokens:
1272
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1273
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1274
+ # input)
1275
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1276
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1277
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1278
+ # input_ids based on the past_length.
1279
+ elif past_length < input_ids.shape[1]:
1280
+ input_ids = input_ids[:, past_length:]
1281
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1282
+
1283
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1284
+ if (
1285
+ max_cache_length is not None
1286
+ and attention_mask is not None
1287
+ and cache_length + input_ids.shape[1] > max_cache_length
1288
+ ):
1289
+ attention_mask = attention_mask[:, -max_cache_length:]
1290
+
1291
+ position_ids = kwargs.get("position_ids", None)
1292
+ if attention_mask is not None and position_ids is None:
1293
+ # create position_ids on the fly for batch generation
1294
+ position_ids = attention_mask.long().cumsum(-1) - 1
1295
+ position_ids.masked_fill_(attention_mask == 0, 1)
1296
+ if past_key_values:
1297
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1298
+
1299
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1300
+ if inputs_embeds is not None and past_key_values is None:
1301
+ model_inputs = {"inputs_embeds": inputs_embeds}
1302
+ else:
1303
+ model_inputs = {"input_ids": input_ids}
1304
+
1305
+ model_inputs.update(
1306
+ {
1307
+ "position_ids": position_ids,
1308
+ "past_key_values": past_key_values,
1309
+ "use_cache": kwargs.get("use_cache"),
1310
+ "attention_mask": attention_mask,
1311
+ }
1312
+ )
1313
+ return model_inputs
1314
+
1315
+ @staticmethod
1316
+ def _reorder_cache(past_key_values, beam_idx):
1317
+ reordered_past = ()
1318
+ for layer_past in past_key_values:
1319
+ reordered_past += (
1320
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1321
+ )
1322
+ return reordered_past
1323
+
1324
+
1325
+ @add_start_docstrings(
1326
+ """
1327
+ The Quiet Model transformer with a sequence classification head on top (linear layer).
1328
+
1329
+ [`QuietForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1330
+ (e.g. GPT-2) do.
1331
+
1332
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1333
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1334
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1335
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1336
+ each row of the batch).
1337
+ """,
1338
+ QUIET_START_DOCSTRING,
1339
+ )
1340
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Quiet, LLAMA->QUIET
1341
+ class QuietForSequenceClassification(QuietPreTrainedModel):
1342
+ def __init__(self, config):
1343
+ super().__init__(config)
1344
+ self.num_labels = config.num_labels
1345
+ self.model = QuietModel(config)
1346
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1347
+
1348
+ # Initialize weights and apply final processing
1349
+ self.post_init()
1350
+
1351
+ def get_input_embeddings(self):
1352
+ return self.model.embed_tokens
1353
+
1354
+ def set_input_embeddings(self, value):
1355
+ self.model.embed_tokens = value
1356
+
1357
+ @add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
1358
+ def forward(
1359
+ self,
1360
+ input_ids: torch.LongTensor = None,
1361
+ attention_mask: Optional[torch.Tensor] = None,
1362
+ position_ids: Optional[torch.LongTensor] = None,
1363
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1364
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1365
+ labels: Optional[torch.LongTensor] = None,
1366
+ use_cache: Optional[bool] = None,
1367
+ output_attentions: Optional[bool] = None,
1368
+ output_hidden_states: Optional[bool] = None,
1369
+ return_dict: Optional[bool] = None,
1370
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1371
+ r"""
1372
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1373
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1374
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1375
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1376
+ """
1377
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1378
+
1379
+ transformer_outputs = self.model(
1380
+ input_ids,
1381
+ attention_mask=attention_mask,
1382
+ position_ids=position_ids,
1383
+ past_key_values=past_key_values,
1384
+ inputs_embeds=inputs_embeds,
1385
+ use_cache=use_cache,
1386
+ output_attentions=output_attentions,
1387
+ output_hidden_states=output_hidden_states,
1388
+ return_dict=return_dict,
1389
+ )
1390
+ hidden_states = transformer_outputs[0]
1391
+ logits = self.score(hidden_states)
1392
+
1393
+ if input_ids is not None:
1394
+ batch_size = input_ids.shape[0]
1395
+ else:
1396
+ batch_size = inputs_embeds.shape[0]
1397
+
1398
+ if self.config.pad_token_id is None and batch_size != 1:
1399
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1400
+ if self.config.pad_token_id is None:
1401
+ sequence_lengths = -1
1402
+ else:
1403
+ if input_ids is not None:
1404
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1405
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1406
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1407
+ sequence_lengths = sequence_lengths.to(logits.device)
1408
+ else:
1409
+ sequence_lengths = -1
1410
+
1411
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1412
+
1413
+ loss = None
1414
+ if labels is not None:
1415
+ labels = labels.to(logits.device)
1416
+ if self.config.problem_type is None:
1417
+ if self.num_labels == 1:
1418
+ self.config.problem_type = "regression"
1419
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1420
+ self.config.problem_type = "single_label_classification"
1421
+ else:
1422
+ self.config.problem_type = "multi_label_classification"
1423
+
1424
+ if self.config.problem_type == "regression":
1425
+ loss_fct = MSELoss()
1426
+ if self.num_labels == 1:
1427
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1428
+ else:
1429
+ loss = loss_fct(pooled_logits, labels)
1430
+ elif self.config.problem_type == "single_label_classification":
1431
+ loss_fct = CrossEntropyLoss()
1432
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1433
+ elif self.config.problem_type == "multi_label_classification":
1434
+ loss_fct = BCEWithLogitsLoss()
1435
+ loss = loss_fct(pooled_logits, labels)
1436
+ if not return_dict:
1437
+ output = (pooled_logits,) + transformer_outputs[1:]
1438
+ return ((loss,) + output) if loss is not None else output
1439
+
1440
+ return SequenceClassifierOutputWithPast(
1441
+ loss=loss,
1442
+ logits=pooled_logits,
1443
+ past_key_values=transformer_outputs.past_key_values,
1444
+ hidden_states=transformer_outputs.hidden_states,
1445
+ attentions=transformer_outputs.attentions,
1446
+ )