Crystalcareai
commited on
Update modeling_quiet.py
Browse files- modeling_quiet.py +68 -50
modeling_quiet.py
CHANGED
@@ -54,21 +54,61 @@ _CONFIG_FOR_DOC = "QuietConfig"
|
|
54 |
|
55 |
|
56 |
def _prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
|
|
57 |
bsz, tgt_len = input_shape
|
58 |
|
|
|
|
|
|
|
|
|
59 |
if attention_mask is not None:
|
60 |
-
if attention_mask
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
elif attention_mask.dim() == 2:
|
64 |
-
#
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
else:
|
67 |
-
raise ValueError(
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
return
|
72 |
|
73 |
|
74 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
@@ -1056,58 +1096,36 @@ class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin):
|
|
1056 |
# Apply the language model head to get the final logits
|
1057 |
logits = self.lm_head(mixed_hidden_states)
|
1058 |
return logits
|
1059 |
-
|
1060 |
@torch.no_grad()
|
1061 |
def generate(
|
1062 |
self,
|
1063 |
-
input_ids=
|
1064 |
-
attention_mask=None,
|
1065 |
-
max_new_tokens=None,
|
1066 |
-
|
1067 |
-
|
1068 |
-
early_stopping=None,
|
1069 |
-
num_beams=None,
|
1070 |
-
temperature=1.0,
|
1071 |
-
top_k=None,
|
1072 |
-
top_p=None,
|
1073 |
-
repetition_penalty=None,
|
1074 |
-
bad_words_ids=None,
|
1075 |
-
bos_token_id=None,
|
1076 |
-
pad_token_id=None,
|
1077 |
-
eos_token_id=None,
|
1078 |
-
length_penalty=None,
|
1079 |
-
no_repeat_ngram_size=None,
|
1080 |
-
num_return_sequences=None,
|
1081 |
-
decoder_start_token_id=None,
|
1082 |
-
use_cache=None,
|
1083 |
-
num_beam_groups=None,
|
1084 |
-
diversity_penalty=None,
|
1085 |
-
prefix_allowed_tokens_fn=None,
|
1086 |
-
output_attentions=None,
|
1087 |
-
output_hidden_states=None,
|
1088 |
-
output_scores=None,
|
1089 |
-
return_dict_in_generate=None,
|
1090 |
-
forced_bos_token_id=None,
|
1091 |
-
forced_eos_token_id=None,
|
1092 |
-
remove_invalid_values=None,
|
1093 |
-
synced_gpus=None,
|
1094 |
-
**model_kwargs,
|
1095 |
):
|
1096 |
-
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
|
|
|
|
|
|
1103 |
self,
|
1104 |
-
input_ids
|
1105 |
attention_mask=attention_mask,
|
1106 |
max_new_tokens=max_new_tokens,
|
1107 |
temperature=temperature,
|
1108 |
-
**
|
1109 |
)
|
1110 |
|
|
|
|
|
1111 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1112 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1113 |
def forward(
|
|
|
54 |
|
55 |
|
56 |
def _prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
57 |
+
# Compute the attention mask correctly
|
58 |
bsz, tgt_len = input_shape
|
59 |
|
60 |
+
# Create a 4D attention mask from a 2D tensor mask.
|
61 |
+
# The shape of the output attention mask is (batch_size, 1, tgt_len, src_len)
|
62 |
+
# The values are either 0 or 1, where 0 means padding and 1 means non-padding.
|
63 |
+
combined_attention_mask = None
|
64 |
if attention_mask is not None:
|
65 |
+
# What if attention_mask is not None and has a shape of (batch_size, 1, tgt_len, src_len)
|
66 |
+
# In this case, we can just use it directly.
|
67 |
+
if attention_mask.dim() == 4:
|
68 |
+
combined_attention_mask = attention_mask
|
69 |
+
# What if attention_mask is not None and has a shape of (batch_size, 1, tgt_len)
|
70 |
+
# In this case, we need to expand it to (batch_size, 1, tgt_len, src_len)
|
71 |
+
elif attention_mask.dim() == 3:
|
72 |
+
expanded_attn_mask = attention_mask[:, None, :, :]
|
73 |
+
combined_attention_mask = expanded_attn_mask
|
74 |
+
# What if attention_mask is not None and has a shape of (batch_size, tgt_len)
|
75 |
+
# In this case, we need to expand it to (batch_size, 1, tgt_len, src_len)
|
76 |
elif attention_mask.dim() == 2:
|
77 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
78 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
79 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
80 |
+
if past_key_values_length > 0:
|
81 |
+
attention_mask = attention_mask.to(dtype=torch.long)
|
82 |
+
attention_mask = attention_mask[:, past_key_values_length:]
|
83 |
+
expanded_attn_mask = attention_mask[:, None, None, :]
|
84 |
+
combined_attention_mask = expanded_attn_mask
|
85 |
else:
|
86 |
+
raise ValueError(
|
87 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
88 |
+
input_shape, attention_mask.shape
|
89 |
+
)
|
90 |
+
)
|
91 |
|
92 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
93 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
94 |
+
# positions we want to attend and -10000.0 for masked positions.
|
95 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
96 |
+
# effectively the same as removing these entirely.
|
97 |
+
if combined_attention_mask is not None:
|
98 |
+
# Ensure the attention mask values are within a reasonable range
|
99 |
+
combined_attention_mask = combined_attention_mask.clamp(min=0, max=1)
|
100 |
+
|
101 |
+
# Convert the attention mask to bfloat16
|
102 |
+
combined_attention_mask = combined_attention_mask.to(torch.bfloat16)
|
103 |
+
|
104 |
+
# Normalize the attention mask values to be between 0 and 1
|
105 |
+
combined_attention_mask = (1.0 - combined_attention_mask) * -10000.0
|
106 |
+
else:
|
107 |
+
combined_attention_mask = torch.zeros(
|
108 |
+
(bsz, 1, tgt_len, tgt_len), dtype=torch.bfloat16, device=inputs_embeds.device
|
109 |
+
)
|
110 |
|
111 |
+
return combined_attention_mask
|
112 |
|
113 |
|
114 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
|
|
1096 |
# Apply the language model head to get the final logits
|
1097 |
logits = self.lm_head(mixed_hidden_states)
|
1098 |
return logits
|
1099 |
+
|
1100 |
@torch.no_grad()
|
1101 |
def generate(
|
1102 |
self,
|
1103 |
+
input_ids: torch.LongTensor = torch.LongTensor(),
|
1104 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1105 |
+
max_new_tokens: Optional[int] = None,
|
1106 |
+
temperature: float = 1.1,
|
1107 |
+
**kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1108 |
):
|
1109 |
+
if isinstance(input_ids, str):
|
1110 |
+
input_ids = self.tokenizer(input_ids, return_tensors="pt").input_ids
|
1111 |
+
|
1112 |
+
if attention_mask is None:
|
1113 |
+
# Create a default attention mask if not provided
|
1114 |
+
attention_mask = torch.ones_like(input_ids)
|
1115 |
+
|
1116 |
+
from .generate import generate
|
1117 |
+
|
1118 |
+
output = generate(
|
1119 |
self,
|
1120 |
+
input_ids,
|
1121 |
attention_mask=attention_mask,
|
1122 |
max_new_tokens=max_new_tokens,
|
1123 |
temperature=temperature,
|
1124 |
+
**kwargs,
|
1125 |
)
|
1126 |
|
1127 |
+
return output.sequences
|
1128 |
+
|
1129 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1130 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1131 |
def forward(
|