File size: 2,841 Bytes
e89477b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model:
- sometimesanotion/Lamarck-14B-v0.3
- CultriX/Qwen2.5-14B-Wernicke
- CultriX/SeQwence-14B
- allknowingroger/QwenStock3-14B
- Qwen/Qwen2.5-14B
- VAGOsolutions/SauerkrautLM-v2-14b-DPO
- sometimesanotion/Qwen2.5-14B-Vimarckoso
library_name: transformers
tags:
- mergekit
- merge

---
# merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) as a base.

### Models Merged

The following models were included in the merge:
* [sometimesanotion/Lamarck-14B-v0.3](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.3)
* [CultriX/Qwen2.5-14B-Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke)
* [CultriX/SeQwence-14B](https://huggingface.co/CultriX/SeQwence-14B)
* [allknowingroger/QwenStock3-14B](https://huggingface.co/allknowingroger/QwenStock3-14B)
* [VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO)
* [sometimesanotion/Qwen2.5-14B-Vimarckoso](https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
models:
  - model: CultriX/Qwen2.5-14B-Wernicke
    parameters:
      weight: 0.25        # GPQA leader, also strong in MUSR/MMLU-PRO
      density: 0.6        # Retain majority for complex reasoning tasks

  - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO
    parameters:
      weight: 0.25        # Top IFEval and good MATH support
      density: 0.6        # Ensure factual and mathematical integrity

  - model: allknowingroger/QwenStock3-14B
    parameters:
      weight: 0.20        # Highest MMLU-PRO for broad domain strength
      density: 0.5        # Balanced retention for general expertise

  - model: CultriX/SeQwence-14B
    parameters:
      weight: 0.20        # Near-top MATH and well-rounded performance
      density: 0.5        # Efficient parameter usage for stable improvement

  - model: sometimesanotion/Lamarck-14B-v0.3
    parameters:
      weight: 0.05        # Top BBH to ensure benchmark coverage
      density: 0.4        # Light integration focusing on key parameters

  - model: sometimesanotion/Qwen2.5-14B-Vimarckoso
    parameters:
      weight: 0.05        # MUSR leader for nuanced, multi-step reasoning
      density: 0.4        # Targeted retention for domain-specific strengths

base_model: Qwen/Qwen2.5-14B
merge_method: dare_ties
parameters:
  normalize: true          # Ensure parameter scale alignment
  int8_mask: true          # Memory/computation efficiency
dtype: bfloat16
tokenizer_source: Qwen/Qwen2.5-14B-Instruct

```