--- base_model: - sometimesanotion/Lamarck-14B-v0.3 - CultriX/Qwen2.5-14B-Wernicke - CultriX/SeQwence-14B - allknowingroger/QwenStock3-14B - Qwen/Qwen2.5-14B - VAGOsolutions/SauerkrautLM-v2-14b-DPO - sometimesanotion/Qwen2.5-14B-Vimarckoso library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) as a base. ### Models Merged The following models were included in the merge: * [sometimesanotion/Lamarck-14B-v0.3](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.3) * [CultriX/Qwen2.5-14B-Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke) * [CultriX/SeQwence-14B](https://huggingface.co/CultriX/SeQwence-14B) * [allknowingroger/QwenStock3-14B](https://huggingface.co/allknowingroger/QwenStock3-14B) * [VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO) * [sometimesanotion/Qwen2.5-14B-Vimarckoso](https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: CultriX/Qwen2.5-14B-Wernicke parameters: weight: 0.25 # GPQA leader, also strong in MUSR/MMLU-PRO density: 0.6 # Retain majority for complex reasoning tasks - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO parameters: weight: 0.25 # Top IFEval and good MATH support density: 0.6 # Ensure factual and mathematical integrity - model: allknowingroger/QwenStock3-14B parameters: weight: 0.20 # Highest MMLU-PRO for broad domain strength density: 0.5 # Balanced retention for general expertise - model: CultriX/SeQwence-14B parameters: weight: 0.20 # Near-top MATH and well-rounded performance density: 0.5 # Efficient parameter usage for stable improvement - model: sometimesanotion/Lamarck-14B-v0.3 parameters: weight: 0.05 # Top BBH to ensure benchmark coverage density: 0.4 # Light integration focusing on key parameters - model: sometimesanotion/Qwen2.5-14B-Vimarckoso parameters: weight: 0.05 # MUSR leader for nuanced, multi-step reasoning density: 0.4 # Targeted retention for domain-specific strengths base_model: Qwen/Qwen2.5-14B merge_method: dare_ties parameters: normalize: true # Ensure parameter scale alignment int8_mask: true # Memory/computation efficiency dtype: bfloat16 tokenizer_source: Qwen/Qwen2.5-14B-Instruct ```