File size: 3,615 Bytes
09b6742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---

library_name: transformers
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test

This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6605
- Precision: 0.7460
- Recall: 0.7692
- F1: 0.7575
- Accuracy: 0.7526

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.3333  | 100  | 1.0907          | 0.4971    | 0.6210 | 0.5522 | 0.5889   |
| No log        | 2.6667  | 200  | 0.7374          | 0.6135    | 0.6857 | 0.6476 | 0.7475   |
| No log        | 4.0     | 300  | 0.8119          | 0.6292    | 0.7193 | 0.6713 | 0.7490   |
| No log        | 5.3333  | 400  | 0.8152          | 0.6930    | 0.7555 | 0.7229 | 0.7616   |
| 0.6197        | 6.6667  | 500  | 0.9915          | 0.6824    | 0.7682 | 0.7227 | 0.7458   |
| 0.6197        | 8.0     | 600  | 1.0589          | 0.6952    | 0.7809 | 0.7356 | 0.7680   |
| 0.6197        | 9.3333  | 700  | 1.1514          | 0.7072    | 0.7285 | 0.7177 | 0.7456   |
| 0.6197        | 10.6667 | 800  | 1.1828          | 0.7190    | 0.7652 | 0.7414 | 0.7625   |
| 0.6197        | 12.0    | 900  | 1.2011          | 0.7301    | 0.7606 | 0.7450 | 0.7679   |
| 0.0998        | 13.3333 | 1000 | 1.2323          | 0.7347    | 0.7662 | 0.7501 | 0.7622   |
| 0.0998        | 14.6667 | 1100 | 1.3060          | 0.7413    | 0.7881 | 0.7640 | 0.7688   |
| 0.0998        | 16.0    | 1200 | 1.3649          | 0.7337    | 0.7636 | 0.7484 | 0.7647   |
| 0.0998        | 17.3333 | 1300 | 1.3661          | 0.7319    | 0.7789 | 0.7547 | 0.7685   |
| 0.0998        | 18.6667 | 1400 | 1.4831          | 0.7386    | 0.7672 | 0.7526 | 0.7635   |
| 0.0226        | 20.0    | 1500 | 1.4216          | 0.7299    | 0.7682 | 0.7486 | 0.7654   |
| 0.0226        | 21.3333 | 1600 | 1.5146          | 0.7295    | 0.7733 | 0.7507 | 0.7539   |
| 0.0226        | 22.6667 | 1700 | 1.6595          | 0.7398    | 0.7748 | 0.7569 | 0.7476   |
| 0.0226        | 24.0    | 1800 | 1.5785          | 0.7609    | 0.7702 | 0.7656 | 0.7677   |
| 0.0226        | 25.3333 | 1900 | 1.5824          | 0.7544    | 0.7886 | 0.7711 | 0.7587   |
| 0.0057        | 26.6667 | 2000 | 1.6605          | 0.7460    | 0.7692 | 0.7575 | 0.7526   |
| 0.0057        | 28.0    | 2100 | 1.6459          | 0.7396    | 0.7697 | 0.7544 | 0.7520   |
| 0.0057        | 29.3333 | 2200 | 1.6605          | 0.7467    | 0.7748 | 0.7605 | 0.7541   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cpu
- Datasets 3.0.0
- Tokenizers 0.19.1