Upload model
Browse files- README.md +203 -0
- config.json +27 -0
- config.py +40 -0
- model.py +166 -0
- model.safetensors +3 -0
- model_hf.py +27 -0
README.md
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- feature-extraction
|
5 |
+
- audio
|
6 |
+
---
|
7 |
+
|
8 |
+
# Model Card for Model ID
|
9 |
+
|
10 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
|
18 |
+
<!-- Provide a longer summary of what this model is. -->
|
19 |
+
|
20 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
21 |
+
|
22 |
+
- **Developed by:** [More Information Needed]
|
23 |
+
- **Funded by [optional]:** [More Information Needed]
|
24 |
+
- **Shared by [optional]:** [More Information Needed]
|
25 |
+
- **Model type:** [More Information Needed]
|
26 |
+
- **Language(s) (NLP):** [More Information Needed]
|
27 |
+
- **License:** [More Information Needed]
|
28 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
29 |
+
|
30 |
+
### Model Sources [optional]
|
31 |
+
|
32 |
+
<!-- Provide the basic links for the model. -->
|
33 |
+
|
34 |
+
- **Repository:** [More Information Needed]
|
35 |
+
- **Paper [optional]:** [More Information Needed]
|
36 |
+
- **Demo [optional]:** [More Information Needed]
|
37 |
+
|
38 |
+
## Uses
|
39 |
+
|
40 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
41 |
+
|
42 |
+
### Direct Use
|
43 |
+
|
44 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
45 |
+
|
46 |
+
[More Information Needed]
|
47 |
+
|
48 |
+
### Downstream Use [optional]
|
49 |
+
|
50 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
51 |
+
|
52 |
+
[More Information Needed]
|
53 |
+
|
54 |
+
### Out-of-Scope Use
|
55 |
+
|
56 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
57 |
+
|
58 |
+
[More Information Needed]
|
59 |
+
|
60 |
+
## Bias, Risks, and Limitations
|
61 |
+
|
62 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
63 |
+
|
64 |
+
[More Information Needed]
|
65 |
+
|
66 |
+
### Recommendations
|
67 |
+
|
68 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
69 |
+
|
70 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
71 |
+
|
72 |
+
## How to Get Started with the Model
|
73 |
+
|
74 |
+
Use the code below to get started with the model.
|
75 |
+
|
76 |
+
[More Information Needed]
|
77 |
+
|
78 |
+
## Training Details
|
79 |
+
|
80 |
+
### Training Data
|
81 |
+
|
82 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
83 |
+
|
84 |
+
[More Information Needed]
|
85 |
+
|
86 |
+
### Training Procedure
|
87 |
+
|
88 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
89 |
+
|
90 |
+
#### Preprocessing [optional]
|
91 |
+
|
92 |
+
[More Information Needed]
|
93 |
+
|
94 |
+
|
95 |
+
#### Training Hyperparameters
|
96 |
+
|
97 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
98 |
+
|
99 |
+
#### Speeds, Sizes, Times [optional]
|
100 |
+
|
101 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
102 |
+
|
103 |
+
[More Information Needed]
|
104 |
+
|
105 |
+
## Evaluation
|
106 |
+
|
107 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
108 |
+
|
109 |
+
### Testing Data, Factors & Metrics
|
110 |
+
|
111 |
+
#### Testing Data
|
112 |
+
|
113 |
+
<!-- This should link to a Dataset Card if possible. -->
|
114 |
+
|
115 |
+
[More Information Needed]
|
116 |
+
|
117 |
+
#### Factors
|
118 |
+
|
119 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
120 |
+
|
121 |
+
[More Information Needed]
|
122 |
+
|
123 |
+
#### Metrics
|
124 |
+
|
125 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
### Results
|
130 |
+
|
131 |
+
[More Information Needed]
|
132 |
+
|
133 |
+
#### Summary
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
## Model Examination [optional]
|
138 |
+
|
139 |
+
<!-- Relevant interpretability work for the model goes here -->
|
140 |
+
|
141 |
+
[More Information Needed]
|
142 |
+
|
143 |
+
## Environmental Impact
|
144 |
+
|
145 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
+
|
147 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
+
|
149 |
+
- **Hardware Type:** [More Information Needed]
|
150 |
+
- **Hours used:** [More Information Needed]
|
151 |
+
- **Cloud Provider:** [More Information Needed]
|
152 |
+
- **Compute Region:** [More Information Needed]
|
153 |
+
- **Carbon Emitted:** [More Information Needed]
|
154 |
+
|
155 |
+
## Technical Specifications [optional]
|
156 |
+
|
157 |
+
### Model Architecture and Objective
|
158 |
+
|
159 |
+
[More Information Needed]
|
160 |
+
|
161 |
+
### Compute Infrastructure
|
162 |
+
|
163 |
+
[More Information Needed]
|
164 |
+
|
165 |
+
#### Hardware
|
166 |
+
|
167 |
+
[More Information Needed]
|
168 |
+
|
169 |
+
#### Software
|
170 |
+
|
171 |
+
[More Information Needed]
|
172 |
+
|
173 |
+
## Citation [optional]
|
174 |
+
|
175 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
+
|
177 |
+
**BibTeX:**
|
178 |
+
|
179 |
+
[More Information Needed]
|
180 |
+
|
181 |
+
**APA:**
|
182 |
+
|
183 |
+
[More Information Needed]
|
184 |
+
|
185 |
+
## Glossary [optional]
|
186 |
+
|
187 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
+
|
189 |
+
[More Information Needed]
|
190 |
+
|
191 |
+
## More Information [optional]
|
192 |
+
|
193 |
+
[More Information Needed]
|
194 |
+
|
195 |
+
## Model Card Authors [optional]
|
196 |
+
|
197 |
+
[More Information Needed]
|
198 |
+
|
199 |
+
## Model Card Contact
|
200 |
+
|
201 |
+
[More Information Needed]
|
202 |
+
|
203 |
+
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SincNetModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "config.SincNetConfig",
|
7 |
+
"AutoModel": "model_hf.SincNetModel"
|
8 |
+
},
|
9 |
+
"conv_filter_length": 5,
|
10 |
+
"min_band_hz": 50,
|
11 |
+
"min_low_hz": 50,
|
12 |
+
"model_type": "sincnet",
|
13 |
+
"num_conv_filters": 60,
|
14 |
+
"num_sinc_filters": 80,
|
15 |
+
"num_wavform_channels": 1,
|
16 |
+
"pool_kernel_size": 3,
|
17 |
+
"pool_stride": 3,
|
18 |
+
"sample_rate": 16000,
|
19 |
+
"sinc_filter_dilation": 1,
|
20 |
+
"sinc_filter_in_channels": 1,
|
21 |
+
"sinc_filter_length": 251,
|
22 |
+
"sinc_filter_padding": 0,
|
23 |
+
"sinc_filter_stride": 10,
|
24 |
+
"stride": 10,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.37.2"
|
27 |
+
}
|
config.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class SincNetConfig(PretrainedConfig):
|
4 |
+
model_type = "sincnet"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
stride: int = 10,
|
9 |
+
num_sinc_filters: int = 80,
|
10 |
+
sinc_filter_length: int = 251,
|
11 |
+
num_conv_filters: int = 60,
|
12 |
+
conv_filter_length: int = 5,
|
13 |
+
pool_kernel_size: int = 3,
|
14 |
+
pool_stride: int = 3,
|
15 |
+
sample_rate: int = 16000,
|
16 |
+
sinc_filter_stride: int = 10,
|
17 |
+
sinc_filter_padding: int = 0,
|
18 |
+
sinc_filter_dilation: int = 1,
|
19 |
+
min_low_hz: int = 50,
|
20 |
+
min_band_hz: int = 50,
|
21 |
+
sinc_filter_in_channels: int = 1,
|
22 |
+
num_wavform_channels: int = 1,
|
23 |
+
**kwargs
|
24 |
+
):
|
25 |
+
self.sample_rate = sample_rate
|
26 |
+
self.stride = stride
|
27 |
+
self.num_sinc_filters = num_sinc_filters
|
28 |
+
self.sinc_filter_length = sinc_filter_length
|
29 |
+
self.num_conv_filters = num_conv_filters
|
30 |
+
self.conv_filter_length = conv_filter_length
|
31 |
+
self.pool_kernel_size = pool_kernel_size
|
32 |
+
self.pool_stride = pool_stride
|
33 |
+
self.sinc_filter_stride = sinc_filter_stride
|
34 |
+
self.sinc_filter_padding = sinc_filter_padding
|
35 |
+
self.sinc_filter_dilation = sinc_filter_dilation
|
36 |
+
self.min_low_hz = min_low_hz
|
37 |
+
self.min_band_hz = min_band_hz
|
38 |
+
self.sinc_filter_in_channels = sinc_filter_in_channels
|
39 |
+
self.num_wavform_channels = num_wavform_channels
|
40 |
+
super().__init__(**kwargs)
|
model.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
""" SincNet model """
|
3 |
+
from functools import lru_cache
|
4 |
+
import numpy as np
|
5 |
+
import logging
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
class SincNetFilterConvLayer(nn.Module):
|
14 |
+
"""SincNet fast convolution filter layer"""
|
15 |
+
|
16 |
+
def __init__(self, out_channels: int, kernel_size: int, sample_rate=16000,
|
17 |
+
stride=1, padding=0, dilation=1, min_low_hz=50, min_band_hz=50,
|
18 |
+
in_channels=1, requires_grad=False):
|
19 |
+
"""
|
20 |
+
Args:
|
21 |
+
out_channels : `int` number of filters.
|
22 |
+
kernel_size : `int` filter length.
|
23 |
+
sample_rate : `int`, optional sample rate. Defaults to 16000.
|
24 |
+
"""
|
25 |
+
super(SincNetFilterConvLayer, self).__init__()
|
26 |
+
|
27 |
+
if in_channels != 1:
|
28 |
+
raise ValueError(f"SincNetFilterConvLayer only support in_channels = 1, was in_channels = {in_channels}")
|
29 |
+
|
30 |
+
self._out_channels = out_channels
|
31 |
+
self._kernel_size = kernel_size
|
32 |
+
|
33 |
+
if kernel_size % 2 == 0:
|
34 |
+
self._kernel_size += 1 # Forcing the filters to be odd
|
35 |
+
|
36 |
+
self._stride = stride
|
37 |
+
self._padding = padding
|
38 |
+
self._dilation = dilation
|
39 |
+
self._sample_rate = sample_rate
|
40 |
+
self._min_low_hz = min_low_hz
|
41 |
+
self._min_band_hz = min_band_hz
|
42 |
+
|
43 |
+
# initialize filterbanks such that they are equally spaced in Mel scale
|
44 |
+
low_hz = 30
|
45 |
+
high_hz = self._sample_rate / 2 - (self._min_low_hz + self._min_band_hz)
|
46 |
+
mel = np.linspace(
|
47 |
+
2595 * np.log10(1 + low_hz / 700), # Convert Hz to Mel
|
48 |
+
2595 * np.log10(1 + high_hz / 700), # Convert Hz to Mel
|
49 |
+
self._out_channels // 2 + 1
|
50 |
+
)
|
51 |
+
hz = 700 * (10 ** (mel / 2595) - 1) # Convert Mel to Hz
|
52 |
+
|
53 |
+
self._low_hz = nn.Parameter(
|
54 |
+
torch.Tensor(hz[:-1]).view(-1, 1),
|
55 |
+
requires_grad=requires_grad
|
56 |
+
)
|
57 |
+
self._band_hz = nn.Parameter(
|
58 |
+
torch.Tensor(np.diff(hz)).view(-1, 1),
|
59 |
+
requires_grad=requires_grad
|
60 |
+
)
|
61 |
+
self.register_buffer(
|
62 |
+
"_window",
|
63 |
+
torch.from_numpy(np.hamming(self._kernel_size)[: self._kernel_size // 2]).float()
|
64 |
+
)
|
65 |
+
self.register_buffer(
|
66 |
+
"_n",
|
67 |
+
(2* np.pi * torch.arange(-(self._kernel_size // 2), 0.0).view(1, -1) / self._sample_rate)
|
68 |
+
)
|
69 |
+
|
70 |
+
@property
|
71 |
+
@lru_cache(maxsize=1)
|
72 |
+
def filters(self) -> torch.Tensor:
|
73 |
+
low = self._min_low_hz + torch.abs(self._low_hz)
|
74 |
+
high = torch.clamp(low + self._min_band_hz + torch.abs(self._band_hz), self._min_low_hz, self._sample_rate/2)
|
75 |
+
band = (high-low)[:,0]
|
76 |
+
|
77 |
+
f_times_t_low = torch.matmul(low, self._n)
|
78 |
+
f_times_t_high = torch.matmul(high, self._n)
|
79 |
+
|
80 |
+
band_pass_left = ((torch.sin(f_times_t_high)-torch.sin(f_times_t_low))/(self._n/2))*self._window
|
81 |
+
band_pass_center = 2 * band.view(-1, 1)
|
82 |
+
band_pass_right = torch.flip(band_pass_left, dims=[1])
|
83 |
+
|
84 |
+
band_pass = torch.cat([band_pass_left,band_pass_center,band_pass_right],dim=1)
|
85 |
+
band_pass = band_pass / (2*band[:,None])
|
86 |
+
return band_pass.view(self._out_channels, 1, self._kernel_size)
|
87 |
+
|
88 |
+
def forward(self, waveforms: torch.Tensor) -> torch.Tensor:
|
89 |
+
"""
|
90 |
+
Args:
|
91 |
+
waveforms : (batch_size, 1, n_samples) batch of waveforms.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
features : (batch_size, out_channels, n_samples_out) batch of sinc filters activations.
|
95 |
+
"""
|
96 |
+
return F.conv1d(waveforms, self.filters, stride=self._stride,
|
97 |
+
padding=self._padding, dilation=self._dilation,
|
98 |
+
).abs_() # https://github.com/mravanelli/SincNet/issues/4
|
99 |
+
|
100 |
+
class SincNet(nn.Module):
|
101 |
+
"""SincNet"""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
num_sinc_filters: int = 80,
|
106 |
+
sinc_filter_length: int = 251,
|
107 |
+
num_conv_filters: int = 60,
|
108 |
+
conv_filter_length: int = 5,
|
109 |
+
pool_kernel_size: int = 3,
|
110 |
+
pool_stride: int = 3,
|
111 |
+
sample_rate: int = 16000,
|
112 |
+
sinc_filter_stride: int = 10,
|
113 |
+
sinc_filter_padding: int = 0,
|
114 |
+
sinc_filter_dilation: int = 1,
|
115 |
+
min_low_hz: int = 50,
|
116 |
+
min_band_hz: int = 50,
|
117 |
+
sinc_filter_in_channels: int = 1,
|
118 |
+
num_wavform_channels: int = 1,
|
119 |
+
):
|
120 |
+
super().__init__()
|
121 |
+
|
122 |
+
if sample_rate != 16000:
|
123 |
+
raise NotImplementedError(f"SincNet only supports 16kHz audio (sample_rate = 16000), was sample_rate = {sample_rate}")
|
124 |
+
|
125 |
+
self.wav_norm1d = nn.InstanceNorm1d(num_wavform_channels, affine=True)
|
126 |
+
|
127 |
+
self.conv1d = nn.ModuleList([
|
128 |
+
SincNetFilterConvLayer(
|
129 |
+
num_sinc_filters,
|
130 |
+
sinc_filter_length,
|
131 |
+
sample_rate=sample_rate,
|
132 |
+
stride=sinc_filter_stride,
|
133 |
+
padding=sinc_filter_padding,
|
134 |
+
dilation=sinc_filter_dilation,
|
135 |
+
min_low_hz=min_low_hz,
|
136 |
+
min_band_hz=min_band_hz,
|
137 |
+
in_channels=sinc_filter_in_channels,
|
138 |
+
),
|
139 |
+
nn.Conv1d(num_sinc_filters, num_conv_filters, conv_filter_length),
|
140 |
+
nn.Conv1d(num_conv_filters, num_conv_filters, conv_filter_length),
|
141 |
+
])
|
142 |
+
self.pool1d = nn.ModuleList([
|
143 |
+
nn.MaxPool1d(pool_kernel_size, stride=pool_stride),
|
144 |
+
nn.MaxPool1d(pool_kernel_size, stride=pool_stride),
|
145 |
+
nn.MaxPool1d(pool_kernel_size, stride=pool_stride),
|
146 |
+
])
|
147 |
+
self.norm1d = nn.ModuleList([
|
148 |
+
nn.InstanceNorm1d(num_sinc_filters, affine=True),
|
149 |
+
nn.InstanceNorm1d(num_conv_filters, affine=True),
|
150 |
+
nn.InstanceNorm1d(num_conv_filters, affine=True),
|
151 |
+
])
|
152 |
+
|
153 |
+
def forward(self, waveforms: torch.Tensor) -> torch.Tensor:
|
154 |
+
"""
|
155 |
+
Args:
|
156 |
+
waveforms : (batch, channel, sample)
|
157 |
+
"""
|
158 |
+
outputs = self.wav_norm1d(waveforms)
|
159 |
+
|
160 |
+
for _, (conv1d, pool1d, norm1d) in enumerate(
|
161 |
+
zip(self.conv1d, self.pool1d, self.norm1d)
|
162 |
+
):
|
163 |
+
outputs = conv1d(outputs)
|
164 |
+
outputs = F.leaky_relu(norm1d(pool1d(outputs)))
|
165 |
+
|
166 |
+
return outputs
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1a33ae4bb439f0732b21ba7a5239c20e918b04573eec7233d07da310011dd17
|
3 |
+
size 172768
|
model_hf.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, AutoConfig, AutoModel
|
2 |
+
from .model import SincNet
|
3 |
+
from .config import SincNetConfig
|
4 |
+
|
5 |
+
class SincNetModel(PreTrainedModel):
|
6 |
+
config_class = SincNetConfig
|
7 |
+
base_model_prefix = "sincnet"
|
8 |
+
|
9 |
+
def __init__(self, config: SincNetConfig):
|
10 |
+
super().__init__(config)
|
11 |
+
|
12 |
+
self.model = SincNet(
|
13 |
+
sinc_filter_stride=config.stride,
|
14 |
+
num_sinc_filters=config.num_sinc_filters,
|
15 |
+
sinc_filter_length=config.sinc_filter_length,
|
16 |
+
num_conv_filters=config.num_conv_filters,
|
17 |
+
conv_filter_length=config.conv_filter_length,
|
18 |
+
pool_kernel_size=config.pool_kernel_size,
|
19 |
+
pool_stride=config.pool_stride,
|
20 |
+
sample_rate=config.sample_rate,
|
21 |
+
)
|
22 |
+
|
23 |
+
def forward(self, waveforms):
|
24 |
+
return self.model(waveforms)
|
25 |
+
|
26 |
+
AutoConfig.register('sincnet', SincNetConfig)
|
27 |
+
AutoModel.register(SincNetConfig, SincNetModel)
|