|
import argparse |
|
import os |
|
import warnings |
|
import mdtex2html |
|
import gradio as gr |
|
|
|
import re |
|
pattern = re.compile("[\n]+") |
|
|
|
import torch |
|
from accelerate import init_empty_weights, load_checkpoint_and_dispatch |
|
from huggingface_hub import snapshot_download |
|
|
|
from transformers.generation.utils import logger |
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_name", default="DAMO-NLP-MT/polylm-multialpaca-13b", |
|
choices=["DAMO-NLP-MT/polylm-multialpaca-13b"], type=str) |
|
parser.add_argument("--gpu", default="0", type=str) |
|
args = parser.parse_args() |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu |
|
num_gpus = len(args.gpu.split(",")) |
|
|
|
if ('int8' in args.model_name or 'int4' in args.model_name) and num_gpus > 1: |
|
raise ValueError("Quantized models do not support model parallel. Please run on a single GPU (e.g., --gpu 0).") |
|
|
|
logger.setLevel("ERROR") |
|
warnings.filterwarnings("ignore") |
|
|
|
model_path = args.model_name |
|
if not os.path.exists(args.model_name): |
|
model_path = snapshot_download(args.model_name) |
|
|
|
config = AutoConfig.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
|
|
if num_gpus > 1: |
|
print("Waiting for all devices to be ready, it may take a few minutes...") |
|
with init_empty_weights(): |
|
raw_model = AutoModelForCausalLM.from_config(config) |
|
raw_model.tie_weights() |
|
model = load_checkpoint_and_dispatch( |
|
raw_model, model_path, device_map="auto", no_split_module_classes=["GPT2Block"] |
|
) |
|
else: |
|
print("Loading model files, it may take a few minutes...") |
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).cuda() |
|
|
|
|
|
def postprocess(self, y): |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
None if message is None else mdtex2html.convert((message)), |
|
None if response is None else mdtex2html.convert(response), |
|
) |
|
return y |
|
|
|
|
|
gr.Chatbot.postprocess = postprocess |
|
|
|
|
|
def parse_text(text): |
|
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split('`') |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
|
else: |
|
lines[i] = f'<br></code></pre>' |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("`", "\`") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br>"+line |
|
text = "".join(lines) |
|
return text |
|
|
|
|
|
def predict(input, chatbot, max_length, top_p, temperature, history): |
|
query = input |
|
query = query.strip() |
|
query = re.sub(pattern, "\n", query) |
|
|
|
chatbot.append((query, "")) |
|
prompt = "" |
|
for i, (old_query, response) in enumerate(history): |
|
prompt += f"{old_query}\n\n" + f"{response}\n" |
|
prompt += f"{query}\n\n" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
inputs.input_ids.cuda(), |
|
attention_mask=inputs.attention_mask.cuda(), |
|
max_length=max_length, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=1.02, |
|
num_return_sequences=1, |
|
eos_token_id=2, |
|
early_stopping=True) |
|
response = tokenizer.decode( |
|
outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
chatbot[-1] = (query, parse_text(response)) |
|
history = history + [(query, response)] |
|
print("==========================================================================") |
|
print(f"chatbot is {chatbot}") |
|
print(f"history is {history}") |
|
print("==========================================================================") |
|
return chatbot, history |
|
|
|
|
|
def reset_user_input(): |
|
return gr.update(value='') |
|
|
|
|
|
def reset_state(): |
|
return [], [] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML("""<h1 align="center">欢迎使用 PolyLM 多语言人工智能助手!</h1>""") |
|
|
|
chatbot = gr.Chatbot() |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
with gr.Column(scale=12): |
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( |
|
container=False) |
|
with gr.Column(min_width=32, scale=1): |
|
submitBtn = gr.Button("Submit", variant="primary") |
|
with gr.Column(scale=1): |
|
emptyBtn = gr.Button("Clear History") |
|
max_length = gr.Slider( |
|
0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) |
|
top_p = gr.Slider(0, 1, value=0.8, step=0.01, |
|
label="Top P", interactive=True) |
|
temperature = gr.Slider( |
|
0, 1, value=0.7, step=0.01, label="Temperature", interactive=True) |
|
|
|
history = gr.State([]) |
|
|
|
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], |
|
show_progress=True) |
|
submitBtn.click(reset_user_input, [], [user_input]) |
|
|
|
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) |
|
|
|
demo.queue().launch(share=False, inbrowser=True) |
|
|